Answer:
<h2>62.5 m/s</h2>
Explanation:
The speed of the car can be found by using the formula

d is the distance
t is the time
From the question we have

We have the final answer as
<h3>62.5 m/s</h3>
Hope this helps you
Here We can use principle of angular momentum conservation
Here as we know boy + projected mass system has no external torque
Since there is no torque so we can say the angular momentum is conserved

now we know that
m = 2 kg
v = 2.5 m/s
L = 0.35 m
I = 4.5 kg-m^2
now plug in all values in above equation

![1.75 = [4.5 + 0.245]\omega](https://tex.z-dn.net/?f=1.75%20%3D%20%5B4.5%20%2B%200.245%5D%5Comega)


so the final angular speed will be 0.37 rad/s
I believe it goes as the following::
1) Waves transfer energy without moving particles
2) The two types of waves are longitudinal and transverse waves OR The two types of waves are mechanical and electromagnetic waves. Both are applicable and should be correct!
Answer: The velocity of the ball is 30.0 m/s
This can be calculated by using the value of acceleration as 10.0 m/s2 in free fall and the given time of 3.0 seconds. To get the
velocity, one will have to multiply the acceleration with the given time and the
quotient would result to 30.0 m/s. Mostly all object regardless of their mass,
fall to earth with the same acceleration in the absence of air resistance and as
the child drops the ball from a window, it gains speed as it falls.
The point of the orbit closest to Earth<span> is called perigee, while the point farthest from </span>Earth<span> is known as apogee</span>