Answer:
An object's acceleration is the rate its velocity (speed and direction) changes. Therefore, an object can accelerate even if its speed is constant - if its direction changes.
Explanation:
Answer:
Read below!
Explanation:
You can watch the sun wheel across the sky during the day, and the stars at night. Focus a telescope on any star besides the north star--especially southern stars--and you can watch them drift across your field of view.
An alternative explanation is that all the stars are painted on (or holes in) some canopy that rotates around the earth. This explanation does not account for the motion of the "wanderers," or planets, as the Greeks called them, or for the path of the moon among the stars.
As we know the stars are massive bodies of significant and varying distance to the earth, the notion they all swing around us in unison seems highly implausible
Answer:

Explanation:
We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.
= 16 m/s - a= 1.2 m/s²
- t= 10 s
Substitute the values into the formula.

Multiply.


We are solving for the initial velocity, so we must isolate the variable
. Subtract 12 meters per second from both sides of the equation.


The cyclist's initial velocity is <u>4 meters per second.</u>
A.) Electromagnetic Current
please mark me as the brainliest
The ball only accelerates during the brief time that the club is in contact
with it. After it leaves the club face, it takes off at a constant speed.
If it accelerates at 20 m/s² during the hit, then
Force = (mass) x (acceleration) = (0.2kg) x (20 m/s²) = <em>4 newtons</em> .