Answer:
The correct option is 'c':electron,proton,helium nucleus
Explanation:
The De-Broglie's wavelength of particle is given by

Thus we can see that wavelength is inversely related to mass of the particle since 'h' (Plank's constant) and velocity is same for all the particles
Thus we conclude that the the lightest particle will have the most wavelength
Electron being the lightest of the 3 particles will have the largest wavelength thus the correct option is 'c'. Since electron has the largest wavelength followed by proton and the least wavelength among the 3 is of helium.
The formula of net Force is:F = mawhere m is the mass of the objecta is the acceleration of the object
thus, if we triple the net force applied to the object:
3F = maa = 3F / m
The acceleration is also tripled since the force is directly proportional to the acceleration.
Answer: The specific heat capacity is very low.
Explanation:
The specific heat capacity of a body is defined as the heat energy required by a body to cause a unit change in its temperature. The value is over low that is why it is easier for the desert sand to easily get very hot during the day. Conversely, it is very easy for the desert sand to lose it's heat a cool breeze pass over it in the night making it very cold in the night. This value also defines how long the desert sand can retain heat. Therefore, the desert sand has a low specific heat capacity.
<span>A message needs to be traveled to mars from earth.
Distance between Earth and Mars (given) s = 400 million km
Speed of light = 3.00—10^5 km/ sec
We know Velocity = distance / time => time = distance / velocity
Time taken t = 400 million km / 3.00—10^5 = 400 x 10^6 / 3 x 10^5 = 1333.3 sec
Time taken t = 22 min</span>