Given: In the given figure, there are two equilateral triangles having side 50 yards each and two sectors of radius (r) = 50 yards each with the sector angle θ = 120°
To Find: The length of the park's boundary to the nearest yard.
Calculation:
The length of the park's boundary (P) = 2× side of equilateral triangle + 2 × length of the arc
or, (P) = 2× 50 yards + 2× (2πr) ( θ ÷360°)
or, (P) = 2× 50 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 209.33 yards
or, (P) = 309.33 yards ≈309 yards
Hence, the option D:309 yards is the correct option.
To reduce a fraction, divide the numerator and the denominator equally until they reach the simplest whole number possible.
In this case, the numerator (720) and the denominator (1080) can both be divided by 360 to get 2/3, our reduced fraction.
Answer:
50
Step-by-step explanation:
X= -5/3 & x=5
I got this by using the quadratic formula.
Answer:
580m^2
Step-by-step explanation:
600m^2 -20m=580m^2