218, 314 are the two values do the middle 95% of the lengths of all pregnancies fall.
We'll use the following properties of sine and cosine to prove this:
Then it's just a matter of filling it in...
sin20sin40 * sin60sin80 = 1/2(cos20 - cos60) * 1/2 (cos20 - cos140) =
1/8( cos40 + 1 - cos160 - cos120 - cos40 - cos80 + cos80 + cos200) =
1/8(1 - cos160 - cos120 + cos200) =
1/8(1 - cos160 - cos120 + cos160) =
1/8(1 - cos120 ) = 1/8( 1 + 1/2 ) = 3/16
A: 2.5 pounds= 2.5
B: 2.5 pounds= 1.63
C: 2.5 pounds= 1.25
Lowest to highest is C, B, A
Answer:
Possible derivation:
d/dx(a x + a y(x) + x a + y(x) a)
Rewrite the expression: a x + a y(x) + x a + y(x) a = 2 a x + 2 a y(x):
= d/dx(2 a x + 2 a y(x))
Differentiate the sum term by term and factor out constants:
= 2 a (d/dx(x)) + 2 a (d/dx(y(x)))
The derivative of x is 1:
= 2 a (d/dx(y(x))) + 1 2 a
Using the chain rule, d/dx(y(x)) = (dy(u))/(du) (du)/(dx), where u = x and d/(du)(y(u)) = y'(u):
= 2 a + d/dx(x) y'(x) 2 a
The derivative of x is 1:
= 2 a + 1 2 a y'(x)
Simplify the expression:
= 2 a + 2 a y'(x)
Simplify the expression:
Answer: = 2 a
Step-by-step explanation: