1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
3 years ago
13

A pump with a power of 5 kW (pump power, and not useful pump power) and an efficiency of 72 percent is used to pump water from a

lake to a pool through a constant diameter. The free surface of the pool is 25 m above the free surface of the lake. If the irreversible head loss in the piping system is 4 m, determine (a) the mass flowrate of water and (b) the pressure difference across the pump.
Engineering
1 answer:
almond37 [142]3 years ago
4 0

Answer:

a) The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump is 245.175 kilopascals.

Explanation:

a) Let suppose that pump works at steady state. The mass flow rate of the water (\dot m), in kilograms per second, is determined by following formula:

\dot m = \frac{\eta \cdot \dot W}{g\cdot H} (1)

Where:

\dot W - Pump power, in watts.

\eta - Efficiency, no unit.

g - Gravitational acceleration, in meters per square second.

H - Hydrostatic column, in meters.

If we know that \eta = 0.72, \dot W = 5000\,W, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the mass flow rate of water is:

\dot m = 14.683\,\frac{kg}{s}

The mass flow rate of water is 14.683 kilograms per second.

b) The pressure difference across the pump (\Delta P), in pascals, is determined by this equation:

\Delta P = \rho\cdot g\cdot H (2)

Where \rho is the density of water, in kilograms per cubic meter.

If we know that \rho = 1000\,\frac{kg}{m^{3}}, g = 9.807\,\frac{m}{s^{2}} and H = 25\,m, then the pressure difference is:

\Delta P = 245175\,Pa

The pressure difference across the pump is 245.175 kilopascals.

You might be interested in
To ensure that a vehicle crash is inelastic, vehicle safety designers add crumple zones to vehicles. A crumple zone is a part of
spin [16.1K]

Answer:

Explanation:

Answer: With crumple zones at the front and back of most cars, they absorb much of the energy (and force) in a crash by folding in on itself much like an accordion. ... As Newton's second law explains force = Mass x Acceleration this delay reduces the force that drivers and passengers feel in a crash.Sep 30, 2020

5 0
3 years ago
The concrete canoe team does some analysis on their design and calculates that they need a compressive strength of 860 psi. They
vlada-n [284]

Answer:

874 psi

Explanation:

Given a sample mean (x') = 900,

and a standard error (SE) = 10

At 99% confidence, Z(critical) = 2.58

That gives 99% confidence interval as,

x' ± Z(critical) x SE = 900 ± 2.58 x 10

The value of the lower limit is,

900 - 25.8 = 874.2

≈ 874 psi

8 0
2 years ago
2. A well of 0.1 m radius is installed in the aquifer of the preceding exercise and is pumped at a rate averaging 80 liter/min.
hodyreva [135]

Question:

The question is not complete. See the complete question and the answer below.

A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.

Answer:

T = 0.11029m²/sec

Radius of influence = 93.304m

expected drawdown = 3.9336m

Explanation:

See the attached file for the explanation.

8 0
3 years ago
Question 9.1 from the textbook. Consider the following workload: Process Burst Time Priority Arrival Time P1 50 4 0 P2 20 1 20 P
Marizza181 [45]

Answer:

Explanation:

The schedule using shortest remaining time, non-preemptive priority and round Robin with quantum number 30 is shown in the attached file, please kindly go through it to access the answer.

5 0
3 years ago
A metal bar has a 0.6 in. x 0.6 in. cross section and a gauge length of 2 in. The bar is loaded with a tensile force of 50,000 l
Aleks [24]

Answer:

modulus =3.97X10^6 Ib/in^2, Poisson's ratio = 0.048

Explanation:

Modulus is the ratio of tensile stress to tensile strain

Poisson's ratio is the ratio of transverse contraction strain to longitudinal extension strain within the direction of the stretching force

And contraction occur from 0.6 in x 0.6 in to 0.599 in x 0.599 in while 2 in extended to 2.007, with extension of 0.007 in

5 0
3 years ago
Other questions:
  • A circuit contains a 40 ohm resistor and a 60 ohms resistor connected in parallel. If you test this circuit with a DMM you shoul
    14·1 answer
  • At a 4 percent annual growth rate in GDP per capita, it will take
    15·1 answer
  • How does a carburetor work?
    7·1 answer
  • Some engineers have developed a device that provides lighting to rural areas with no access to grid electricity. The device is i
    13·1 answer
  • R 134a enters a air to fluid heat exchanger at 700 kPa and 50 oC. Air is circulated into the heat exchanger to cool the R134a to
    6·1 answer
  • The Review_c object has a lookup relationship up to the Job_Application_c object. The job_Application_c object has a master-deta
    7·1 answer
  • The manufacturer of a 1.5 V D flashlight battery says that the battery will deliver 9 mA for 40 continuous hours. During that ti
    11·1 answer
  • Cho biết tác dụng chung của các hệ giằng khung ngang nhà công nghiệp nhẹ 1 tầng 1 nhịp.
    13·1 answer
  • A composite shaft with length L = 46 in is made by fitting an aluminum sleeve (Ga = 5 x 10^3 ksi) over a
    14·1 answer
  • Hi I'm trying to build a desk that moves up and down electrically but i need help
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!