1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
3 years ago
12

To ensure that a vehicle crash is inelastic, vehicle safety designers add crumple zones to vehicles. A crumple zone is a part of

a vehicle designed to crumple easily in a crash. Use Newton’s second law to explain why crumple zones reduce the force in a collision. Help me I dont know this
Engineering
1 answer:
spin [16.1K]3 years ago
5 0

Answer:

Explanation:

Answer: With crumple zones at the front and back of most cars, they absorb much of the energy (and force) in a crash by folding in on itself much like an accordion. ... As Newton's second law explains force = Mass x Acceleration this delay reduces the force that drivers and passengers feel in a crash.Sep 30, 2020

You might be interested in
In the construction of a large reactor pressure vessel, a new steel alloy with a plane strain fracture toughness of 55 MPa-m1/2
sp2606 [1]

Answer:

l=24mm

Explanation:

From the question we are told that:

Plane strain fracture toughness of T=55 MPa-m1/2

Y value Y=1.0

Stress level of\sigma =200 MPa

Generally the equation for length of a surface crack is mathematically given by

l=\frac{1}{\pi}(\frac{T}{Y*\sigma})^2

l=\frac{1}{3.142}(\frac{55}{1*200})^2

l=0.024m

Therefore

in mm

l=24mm

6 0
2 years ago
You are given a noninverting 741 op-amp with a dc-gain of 23.6 dB. The input signal to this amplifier is;Vin(t) = (0.18)∙cos(2π(
Vsevolod [243]

Answer:

Output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Explanation:

Given:

dc gain A = 23.6 dB

Input signal V_{in} (t) = 0.18 \cos (2\pi (57000)t +18.3)

Now convert gain,

A = 10^{\frac{23.6}{20} } = 15.13

DC gain at frequency f = 0 is given by,

  A = \frac{V_{out} }{V_{in} }

V_{out} =AV_{in}

V_{out} = 15.13 \times   0.18 \cos (2\pi (57000)t +18.3)

At zero frequency above equation is written as,

V_{out} = 2.72 \times \cos 18.3

V_{out} = 2.72

Now we write output voltage as input voltage,

V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

Therefore, output voltage equation is V_{out} (t) = 2.72 \cos (2\pi (57000)t +18.3)

7 0
2 years ago
Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l
sergeinik [125]

The local convection heat transfer coefficient at 1 m from the leading edge is  0.44 \frac{W}{m^{2} \times K} ,  the average convection heat transfer coefficient over the entire plate is  0.293 \frac{W}{m^{2} \times K}and the total heat flux transfer to the plate is 61.6 KJ.

Explanation:

It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction.  

Hot carbon dioxide exhaust gas

physical properties

r= 1.05 \frac{kg}{m^{3}}

c_p = 1.02 \frac{kJ}{Kg \times K}

m= 231 \times 10^{7}  \frac{N \times s }{m^2}

υ = 21.8 \times 10^{6}  \frac{m^2}{s}

k = 32.5 \times 10^{3} \frac{W}{m \times K}

\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}

Pr = 0.725

Apart from these other data arr given below,

v= 3 \frac{m}{s}  \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C

To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,

Nu = \frac{ h \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

where h= Average heat transfer coefficient

           L= Length of a plate

           k= Thermal Conductivity of carbon dioxide

           Re = Reynold's Number

           Pr  = Prandtle Number

(a) Convection heat transfer coefficient at 1 m from the leading edge

    is referred as local convection heat transfer coefficient.

   

   To find convection heat transfer coefficient at 1 m from leading edge,

  Nu = \frac{ h_local \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

  Here, first we have to find Re and Pr,

   Re = \frac{r \times v \times L}{m}

   Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}

   Re = 20.63 \times  10^{-10}

   Pr number is take from physical property data and Pr is 0.725.

   Putting value of Re and Pr in main equation,

   we get

   Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   = 32.5 \times 10^{3} \times  0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   =  0.44 \frac{W}{m^{2} \times K}

(b)  To find average convection heat transfer coefficient,

      it can be find out as case (a), only difference is that instead of L=1 m,        L=1.5 m would come,  

   Therefore,

    Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    Finally,

      h  = \frac{0.44}{1.5}

      h  = 0.293 \frac{W}{m^{2} \times K}

(C) Total heat flux transfer to the plate is found out by,

     Q = h \times (T_g - T_s)

     Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140  \\ Q= 61.6 KJ

     

     

   

   

     

   

     

   

   

 

   

   

   

   

8 0
2 years ago
No question but thx<br> reeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
jeka94

Answer:

why you doin this

Explanation:

is this so we get free points?

5 0
2 years ago
Read 2 more answers
What is the following passage saying about the relationship between sustainability and responsibility?
7nadin3 [17]

What the given passage is saying about the relationship between sustainability and responsibility is that;

C: We should only consider products or services to be green if their broad impact can be considered so.

<h3>Sustainability</h3>

From the passage, we see a write up questioning if the things we term to be green are truly green.

Now, from the passage, we see that a biofuel that is considered to be green is not really green if we consider that if it requires massive overproduction, it could wreck the water table.

Also, he says that if the production is local but also wasteful then it is not green.

Thus, we can see clearly that before we term a product or service as green, we should also consider their broad impact on the environment.

Read more about sustainability at; brainly.com/question/14154063

7 0
2 years ago
Other questions:
  • 1. Create a class called Name that represents a person's name. The class should have fields named firstName representing the per
    8·2 answers
  • What are the causes of kickback on a table-saw?
    13·1 answer
  • PLZ HURRY IM ON A TIMER
    6·1 answer
  • A mass of 0.3 kg is suspended from a spring of stiffness 0.4 N/mm. The damping is 3.286335345 kg/s. What is the undamped natural
    5·1 answer
  • Part of the following pseudocode is incompatible with the Java, Python, C, and C++ language Identify the problem. How would you
    12·1 answer
  • The normal stress at gage H calculated in Part 1 includes four components: an axial component due to load P, σaxial, P, a bendin
    9·1 answer
  • Air is compressed in a well insulated compressor from 95 kPa and 27 C to 600 kPa and 277 C. Use the air tables; assume negligibl
    11·1 answer
  • (CO 3) A nonrecursive filter may best be described as _____. Group of answer choices a filter whose current output depends on pa
    13·1 answer
  • 6.3. A __________ is used to indicate the base material that needs to be beveled.
    12·1 answer
  • Find the mean deviation of the set of numbers<br> (a) 12, 6, 7, 3, 15, 10, 18,5
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!