Answer:
Answer is B A cooler full of ice chilling a soda sitting on top of it
Explanation:
A cooler full of ice chilling a soda sitting on top of it
Answer:
The algorithm is as follows:
1. Declare Arr1 and Arr2
2. Get Input for Arr1 and Arr2
3. Initialize count to 0
4. For i in Arr2
4.1 For j in Arr1:
4.1.1 If i > j Then
4.1.1.1 count = count + 1
4.2 End j loop
4.3 Print count
4.4 count = 0
4.5 End i loop
5. End
Explanation:
This declares both arrays
1. Declare Arr1 and Arr2
This gets input for both arrays
2. Get Input for Arr1 and Arr2
This initializes count to 0
3. Initialize count to 0
This iterates through Arr2
4. For i in Arr2
This iterates through Arr1 (An inner loop)
4.1 For j in Arr1:
This checks if current element is greater than current element in Arr1
4.1.1 If i > j Then
If yes, count is incremented by 1
4.1.1.1 count = count + 1
This ends the inner loop
4.2 End j loop
Print count and set count to 0
<em>4.3 Print count</em>
<em>4.4 count = 0</em>
End the outer loop
4.5 End i loop
End the algorithm
5. End
Answer:

Explanation:
Availability:
It define as the probability of system which perform desired task before showing any failure .
The availability can be define as follows

Or we can say that

Availability can also be express as

Where MTBF is the mean time between two failure.
MTTR is the mean time to repair.
Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa,
We know that for an ideal gas the mass flow rate will be calculated as follows.
or, m =
=
= 10 kg/s
Now, according to the steady flow energy equation:
= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
=
Therefore, we can conclude that the exit temperature of the gas in deg C is
.