1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
3 years ago
6

R 134a enters a air to fluid heat exchanger at 700 kPa and 50 oC. Air is circulated into the heat exchanger to cool the R134a to

saturated liquid at 700 kPa. Ambient air at 20 oC and 100 kPa is circulated into the heat exchanger to cool the R134a. If The mass flow rate of R134a is 0.099 kg/sec and the circulated air increases in temperature by 5 oC, what is the volumetric flow rate of air through the heat exchanger
Engineering
1 answer:
OLEGan [10]3 years ago
4 0

Answer:

The volumetric flow rate of air through the heat exchanger is 3.36 m³/s.

Explanation:

Here we have,

-\dot {m_1} c_1dt_1 = \dot {m_2} c_2dt_2

The properties of R 134a at 700 kPa Saturated temperature = 26.7 °C and enthalpy = 88.8 kJ/kg

While at super heated temperature and pressure of 70 kPa and 50 °C the enthalpy is 288.53 kJ/kg

Therefore, we have, the heat lost per kg  = 288.53 kJ/kg - 88.8 kJ/kg = 199.73 kJ/kg

For air we have at 20 ° and 100 kPa, enthalpy = 294 kJ/kg

At 25 °  c_p = 1.012 J·g⁻¹·K⁻¹

    20 ° C  c_p = 1.006 kJ/(kg·K)

Therefore,  c_p air = 1.006 kJ/(kg·K)

Plugging in the values into the above equation, we have

-\dot {m_1} c_1dt_1 = \dot {m_2} c_2dt_2 = 0.099 kg/sec × 199.73 kJ/kg  = \dot {m_2} \times 1.006 \times 5  \textdegree

\dot {m_2} = 19.77/5.03 = 3.93 kg/s

At 100 kPa  and  25° C the density of air is 1.16843 kg/m³

Therefore the volume flow rate = 3.93/1.16843 =3.36 m³/s.

You might be interested in
Fictional Corp is looking at solutions for their new CRM system for the sales department. The IT staff already has a fairly heav
Oksi-84 [34.3K]

Answer:

SaaS

Explanation:

Software as a service (SaaS) is also called software on demand, it involves a third party that centrally hosts the software and provides it to the end user.

All aspects of hosting is handled by the third party: application, data, runtime, middleware, operating system, server, virtualization, storage and networking are all handled by the provider.

This is an ideal software service for Fictional corp, as there will be no need to hire additional IT staff to maintain the new CRM software.

3 0
3 years ago
A 60-cm-high, 40-cm-diameter cylindrical water tank is being transported on a level road. The highest acceleration anticipated i
dlinn [17]

Answer:

h_{max} = 51.8 cm

Explanation:

given data:

height of tank = 60cm

diameter of tank =40cm

accelration = 4 m/s2

suppose x- axis - direction of motion

z -axis - vertical direction

\theta = water surface angle with horizontal surface

a_x =accelration in x direction

a_z =accelration in z direction

slope in xz plane is

tan\theta = \frac{a_x}{g +a_z}

tan\theta = \frac{4}{9.81+0}

tan\theta =0.4077

the maximum height of water surface at mid of inclination is

\Delta h = \frac{d}{2} tan\theta

            =\frac{0.4}{2}0.4077

\Delta h  0.082 cm

the maximu height of wwater to avoid spilling is

h_{max} = h_{tank} -\Delta h

            = 60 - 8.2

h_{max} = 51.8 cm

the height requird if no spill water is h_{max} = 51.8 cm

3 0
3 years ago
Who here is a genius?
Pachacha [2.7K]

Answer:

im kinda smart  whyy?

Explanation:

3 0
3 years ago
Read 2 more answers
A thin-walled cylinder of average radius 50 mm, and wall thickness 1.0 mm is of length 500 mm, and is built into a wall at one e
kotykmax [81]

Answer:

0

Explanation:

7 0
3 years ago
Assume a program requires the execution of 50 x 106 FP instructions, 110 x 106 INT instructions, 80 x 106 L/S instructions, and
Pavlova-9 [17]

Answer:

Part A:

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

Explanation:

FP Instructions=50*106=5300

INT  Instructions=110*106=11660

L/S  Instructions=80*106=8480

Branch  Instructions=16*106=1696

Calculating Execution Time:

Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

Execution Time=\frac{5300*1+11660*1+8480*4+1696*2}{2*10^9\ Hz}

Execution Time=2.7136*10^{-5}\ s

Part A:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300* New\  CPI_1+11660*1+8480*4+1696*2}{2*10^9\ Hz} \\ New\ CPI_1=-4.12

CPI cannot be negative so it is not possible to for program to run two times faster.

Part B:

For Program to run two times faster,Execution Time (Calculated above) is reduced to half.

New Execution Time=\frac{2.7136*10^{-5}}{2}=1.3568*10^{-5}\ s

1.3568*10^{-5}=\frac{5300*1+11660*1+8480*New\ CPI_3+1696*2}{2*10^9\ Hz} \\ New\ CPI_3=0.8

CPI reduced by 1-\frac{0.8}{4} = 0.80=80%

Part C:

New\ CPI_1=0.6*Old\ CPI_1=0.6*1=0.6\\New\ CPI_2=0.6*Old\ CPI_2=0.6*1=0.6\\New\ CPI_3=0.7*Old\ CPI_3=0.7*4=2.8\\New\ CPI_4=0.7*Old\ CPI_4=0.7*2=1.4

New Execution Time=\frac{\sum^4_{i=1} Number\ of\ Instruction*\ CPI_{i}}{Clock\ Rate}

New Execution Time=\frac{5300*0.6+11660*0.6+8480*2.8+1696*1.4}{2*10^9\ Hz}=1.81472*10^{-5}\ s

Increase in speed=1-\frac{1.81472*10^{-5}}{2.7136*10^{-5}} =0.33125= 33.125\%

8 0
3 years ago
Other questions:
  • Which of the following is the correct definition of mechanical energy?
    9·2 answers
  • Sketch the velocity profile for laminar and turbulent flow.
    15·1 answer
  • Ear "popping" is an unpleasant phenomenon sometimes experienced when a change in pressure occurs, for example in a
    12·1 answer
  • The equation for the velocity V in a pipe with diameter d and length L, under laminar condition is given by the equation V=Δpdsq
    10·1 answer
  • A long rod of 60-mm diameter and thermophysical properties rho=8000 kg/m^3, c=500J/kgK, and k=50 W/mK is initally at a uniform t
    8·1 answer
  • I need help to convert 23.5 million nanometers to millimeters
    15·2 answers
  • A window‐mounted air‐conditioning unit (AC) removes energy by heat transfer from a room, and rejects energy by heat transfer to
    13·1 answer
  • My teacher wants me to build a perpetual motion machine and present it. I know they don't exist, and SHE knows they don't exist
    12·2 answers
  • A traffic flow has density 61 veh/km when the speed is 59 veh/hr. If a flow has a jam density of 122 veh/km, what is the maximum
    13·1 answer
  • A sprinter reaches his maximum speed in 2.5sec from rest with constant acceleration. He then maintains that speed and finishes t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!