Relay contacts that are defined as being normally open (n.o.) have contacts that are open only if the relay coil is known to have de-energized.
<h3>What is meant by normally open contacts?</h3>
Normally open (NO) are known to be open if there is no measure of current that is flowing through a given coil but it often close as soon as the coil is said to be energized.
Note that Normally closed (NO) contacts are said to be closed only if the coil is said to be de-energized and open only if the coil is said to carry current or is known to have energized.
The role of relay contact is wide. The Relays are tools that are often used in the work of switching of control circuits and it is one that a person cannot used for power switching that has relatively bigger ampacity.
Therefore, Relay contacts that are defined as being normally open (n.o.) have contacts that are open only if the relay coil is known to have de-energized.
Learn more about Relay contacts from
brainly.com/question/15334861
#SPJ1
Answer:
The rate of entropy change of the air is -0.10067kW/K
Explanation:
We'll assume the following
1. It is a steady-flow process;
2. The changes in the kinetic energy and the potential energy are negligible;
3. Lastly, the air is an ideal gas
Energy balance will be required to calculate heat loss;
mh1 + W = mh2 + Q where W = Q.
Also note that the rate of entropy change of the air is calculated by calculating the rate of heat transfer and temperature of the air, as follows;
Rate of Entropy Change = -Q/T
Where Q = 30Kw
T = Temperature of air = 25°C = 298K
Rate = -30/298
Rate = -0.100671140939597 KW/K
Rate = -0.10067kW/K
Hence, the rate of entropy change of the air is -0.10067kW/K
Answer:
Scientists observe the world, while engineers focus on creating. While both fields do involve observation and analysis, engineering mainly deals with creating and working on already existing creations, while scientists work with things in nature.
Answer:
Total elongation will be 0.012 m
Explanation:
We have given diameter of the cylinder = 2.1 mm
Length of wire 
So radius 
Load F = 280 N
Elastic modulus = 207 Gpa
Area of cross section 
We know that elongation in wire is given by
, here F is load, L is length, A is area and E is elastic modulus
So 