Penetrating finishes are absorbed by the wood and dry inside the wood. Interior wood stain is used to accentuate the grain in natural woods or plywood while still adding some color. While wood stains offer some level of protection on wood, it's recommended to use stain in combination with a surface finish.
Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW
Answer:
Option ‘a’ is the cheapest for this house.
Explanation:
Cheapest method of heating must have least cost per kj of energy. So, convert all the energy in the same unit (say kj) and take select the cheapest method to heat the house.
Given:
Three methods are given to heat a particular house are as follows:
Method (a)
Through Gas, this gives energy of amount $1.33/therm.
Method (b)
Through electric resistance, this gives energy of amount $0.12/KWh.
Method (c)
Through oil, this gives energy of amount $2.30/gallon.
Calculation:
Step1
Change therm to kj in method ‘a’ as follows:

$/kj.
Step2
Change kWh to kj in method ‘b’ as follows:

$/kj.
Step3
Change kWh to kj in method ‘c’ as follows:

$/kj.
Thus, the method ‘a’ has least cost as compare to method b and c.
So, option ‘a’ is the cheapest for this house.
Answer: 1766.667 Ω = 1.767kΩ
Explanation:
V=iR
where V is voltage in Volts (V), i is current in Amps (A), and R is resistance in Ohms(Ω).
3mA = 0.003 A
Rearranging the equation, we get
R=V/i
Now we are solving for resistance. Plug in 0.003 A and 5.3 V.
R = 5.3 / 0.003
= 1766.6667 Ω
= 1.7666667 kΩ
The 6s are repeating so round off to whichever value you need for exactness.