1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
3 years ago
7

Solution A has a specific heat of 2.0 J/g◦C. Solution B has a specific heat of 3.8 J/g◦C. If equal masses of both solutions start

at the same temperature and equal amounts of heat are added to each solution, which will be true? 1. SolutionBattainsahigher temperature. 2. Solution A attains a higher temperature. 3. Both solutions have the same final temperature.
Physics
1 answer:
fgiga [73]3 years ago
7 0

Answer: 2. Solution A attains a higher temperature.

Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.

In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.

Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.

<em>We have a formula for such condition,</em>

Q=m.c.\Delta T.....................................(1)

where:

  • \Delta T= temperature difference
  • Q= heat energy
  • m= mass of the body
  • c= specific heat of the body

<u>Proving mathematically:</u>

<em>According to the given conditions</em>

  • we have equal masses of two solutions A & B, i.e. m_A=m_B
  • equal heat is supplied to both the solutions, i.e. Q_A=Q_B
  • specific heat of solution A, c_{A}=2.0 J.g^{-1} .\degree C^{-1}
  • specific heat of solution B, c_{B}=3.8 J.g^{-1} .\degree C^{-1}
  • \Delta T_A & \Delta T_B are the change in temperatures of the respective solutions.

Now, putting the above values

Q_A=Q_B

m_A.c_A. \Delta T_A=m_B.c_B . \Delta T_B\\\\2.0\times \Delta T_A=3.8 \times \Delta T_B\\\\ \Delta T_A=\frac{3.8}{2.0}\times \Delta T_B\\\\\\\frac{\Delta T_{A}}{\Delta T_{B}} = \frac{3.8}{2.0}>1

Which proves that solution A attains a higher temperature than solution B.

You might be interested in
A student says that a speed of 50 m/s is faster than a speed of 140 km/h because the number is bigger. What would you say to the
Yuri [45]

if you convert these into miles per hour 50 m/s would be higher, since

50 m/s = 111.85 mph and

140 km/h = 86.99 mph

3 0
3 years ago
Resistance in wires causes which of the following to occur?
Natasha_Volkova [10]

Resistance in wires causes thermal energy. The correct answer between all the choices given is the third choice or letter C. I am hoping that this answer has satisfied your query and it will be able to help you in your endeavor, and if you would like, feel free to ask another question.

3 0
3 years ago
Read 2 more answers
Help Plsss
sattari [20]
On the Newtonian theory of gravity, gravitation affects anything with mass. Assuming that none of the answer choices is the only thing that exists in the universe, all of the answer choices are subject to the law of universal gravitation (hence “universal”).

Satellites, water, frogs, and stars all have mass as they are all composed of matter. Thus, all four answer choices should be circled.
3 0
4 years ago
The two speakers at S1 and S2 are adjusted so that the observer at O hears an intensity of 6 W/m² when either S1 or S2 is sounde
Zanzabum

Answer:

The minimum frequency is 702.22 Hz

Explanation:

The two speakers are adjusted as attached in the figure. From the given data we know that

S_1 S_2=3m

S_1 O=4m

By Pythagoras theorem

                                 S_2O=\sqrt{(S_1S_2)^2+(S_1O)^2}\\S_2O=\sqrt{(3)^2+(4)^2}\\S_2O=\sqrt{9+16}\\S_2O=\sqrt{25}\\S_2O=5m

Now

The intensity at O when both speakers are on is given by

I=4I_1 cos^2(\pi \frac{\delta}{\lambda})

Here

  • I is the intensity at O when both speakers are on which is given as 6 W/m^2
  • I1 is the intensity of one speaker on which is 6  W/m^2
  • δ is the Path difference which is given as

                                           \delta=S_2O-S_1O\\\delta=5-4\\\delta=1 m

  • λ is wavelength which is given as

                                             \lambda=\frac{v}{f}

      Here

              v is the speed of sound which is 320 m/s.

              f is the frequency of the sound which is to be calculated.

                                  16=4\times 6 \times cos^2(\pi \frac{1 \times f}{320})\\16/24= cos^2(\pi \frac{1f}{320})\\0.667= cos^2(\pi \frac{f}{320})\\cos(\pi \frac{f}{320})=\pm0.8165\\\pi \frac{f}{320}=\frac{7 \pi}{36}+2k\pi \\ \frac{f}{320}=\frac{7 }{36}+2k \\\\ {f}=320 \times (\frac{7 }{36}+2k )

where k=0,1,2

for minimum frequency f_1, k=1

                                  {f}=320 \times (\frac{7 }{36}+2 \times 1 )\\\\{f}=320 \times (\frac{79 }{36} )\\\\ f=702.22 Hz

So the minimum frequency is 702.22 Hz

5 0
3 years ago
To a stationary observer, a bus moves north with a speed of 10 m/s. A man inside walks toward the back of the bus with a speed o
Rudiy27
9.6m/s - apex .........................
3 0
3 years ago
Read 2 more answers
Other questions:
  • 2. Două surse coerente oscileaza cu frecventa de 1 Hz, iar undele generate de elel se propaga pe suprafața apei cu viteza de 1,
    7·1 answer
  • You are using a rope to lift a 14.5 kg crate of fruit. Initially you are lifting the crate at 0.500 m/s. You then increase the t
    5·1 answer
  • A football player is preparing to punt the ball down the field. He drops the ball from rest and it falls vertically 1.0 m down o
    13·1 answer
  • What does Kinetic Energy depend on
    8·1 answer
  • The speed of a projectile when it reaches its maximum height is 0.58 times its speed when it is at half its maximum height. What
    9·1 answer
  • An open train car, with a mass of 2130 kg, coasts along a horizontal track at the speed 2.93 m/s. The car passes under a loading
    12·1 answer
  • Tool used to measure time
    14·2 answers
  • Solve the current and voltage problems for the ci
    6·2 answers
  • A 1200 kg car traveling east at 4.5 m/s crashes into the side of a 2100 kg truck that is not moving. During the collision, the v
    8·1 answer
  • Describe the differences between the energy, spacing, andmovement of molecules in a solid, a liquid, and a gas.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!