Answer:
C) to show that atoms are conserved in chemical reactions
Explanation:
When writing a chemical reaction, we should always consider the Mass Conservation Law, which basically states that; in an isolated system; the total mass should remain constant, this is, the total mass of the reactives should be equal to the total mass of the products
For this case, we should add the apporpiate coefficients in order to be in compliance with this law:
2H₂ + O₂ → 2H₂O
So, we can check the above statement:
For reactives (left side):
4H
2O
For product (right side):
4H
2O
<span>the balanced chemical equation for the reaction is as follows;
C</span>₃H₈ + 5O₂ ---> 3CO₂ + 4H₂<span>O
stoichiometry of </span> C₃H₈ to O₂ is 1:5
number of moles of C₃H₈ reacted - 0.025 g / 44.1 g/mol = 0.000567 mol according to molar ratio of 1:5
number of O₂ moles required are 5 times the amount of C₃H₈ moles reacted therefore number of O₂ moles required - 0.000567 x 5 = 0.00284 mol .
mass of O₂ required - 0.00284 mol x 32.00 g/mol = 0.091 mol .
answer is 0.091 mol
One of the causes of polarity is the unequal forces of the dipole forces due to differences in electronegativity. The more electronegative molecule tend to attract electrons, hence the polarity arrows point towards it. The electronegativity of Phosphorus and Fluorine is 2.19 and 3.98, respectively. Thus, it points outward towards the fluorine atoms.
Answer:
Fewer hydrogen bonds form between alcohol molecules. As a result, less heat is needed for alcohol molecules to break away from solution and enter the air.
Explanation:
Hydrogen bonding is a kind of intermolecular interaction that occurs when hydrogen is bonded to a highly electronegative atom.
Both water and alcohols exhibit hydrogen bonding. However, alcohols exhibit fewer hydrogen bonds than water.
As a result of this, the temperature of evaporation is much higher for water than for alcohol because hydrogen bonds hold water molecules more closely than alcohol molecules are held.
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)