Nuclear energy is energy in the nucleus (core) of an atom. Atoms are tiny particles that make up every object in the universe. There is enormous energy in the bonds that hold atoms together. Nuclear energy can be used to make electricity.
The sun gives off light energy to help plants photosynthesize and make food
Forming a covalent bond
A covalent bond is formed when two atoms share a pair of electrons. Covalent bonding occurs in most non-metal elements, and in compounds formed between non-metals.
These shared electrons are found in the outer shells of the atoms. Usually each atom contributes one electron to the shared pair of electrons.
The slideshow shows how a covalent bond forms between a hydrogen atom and a chlorine atom, making hydrogen chloride.
Structures of a hydrogen atom and a chlorine atom.
1. A hydrogen atom with one electron and a chlorine atom with 17 electrons
Molecules
Most covalently bonded substances consist of small molecules. A molecule is a group of two or more atoms joined together by covalent bonds. Molecules of the same element or compound always contain the same number of atoms of each element.
The atoms in a molecule are always joined together by a covalent bond. Substances that are made up of ions do not form molecules.
Sizes of atoms and simple molecules
A small molecule contains only a few atoms, so atoms and small molecules have a similar range of sizes. They are very small, typically around 0.1 nm or 1 × 10-10 m across.
Ps please mark me as brainiest please
Answer:
mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Explanation:
The partition coefficient of X between ethoxy ethane (ether) and water, K is given by the formula
K = concentration of X in ether/concentration of X in water
Partition coefficient, K(X) between ethoxy ethane and water = 40
Concentration of X in ether = mass(g)/volume(dm³)
Mass of X in ether = m g
Volume of ether = 50/1000 dm³ = 0.05 dm³
Concentration of X in ether = (m/0.05) g/dm³
Concentration of X in water = mass(g)/volume(dm³)
Mass of X in water left after extraction with ether = (5 - m) g
Volume of water = 1 dm³
Concentration of X in water = (5 - m/1) g/dm³
Using K = concentration of X in ether/concentration of X in water;
40 = (m/0.05)/(5 - m)
(m/0.05) = 40 × (5 - m)
(m/0.05) = 200 - 40m
m = 0.05 × (200 - 40m)
m = 10 - 2m
3m = 10
m = 10/3
m = 3.33 g of X
Therefore, mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Answer:
The MOLARITY of a solution tells how many moles of solute are present per liter
Explanation:
Molarity is a sort of concentration.
It is written as M (mol/L)