Answer:
dear user
the answer is given above
Hello! The answer to your question would be as followed:
<u><em>A. 38 molecules of ATP are produced</em></u>
<u><em></em></u>
The ATP yield during aerobic respiration isn't 36-38, but only about 30-32 ATP molecules/ 1 molecule of glucose.
Answer:
Which type of selection tends to increase genetic variation? A. Disruptive selection B. Directional selection C. Stabilizing selection
The Answer is option A (Disruptive selection)
Explanation:
Selection can either shift the mean value of a trait, reduce the trait's variation, or increase its variation.
Genetic variation which allows natural selection to increase or decrease frequency of alleles already in the population is a source of phenotypic variation as it refers to differences in all the hereditary information of members of the same species.
Disruptive Selection is important in maintaining variation and initiating speciation as it Increases Variation by favoring alleles corresponding to more extreme phenotypes. But for it to occur, the mean phenotype has to experience the lowest fitness. Disruptive selection affects the frequency distributions of alleles and genotypes within a population.
Disruptive selection is based on the variance of a trait in a population as it increases genetic variance by equalizing the frequencies of existing alleles at polymorphic loci (a genetic loci with two or more alleles). Disruptive selection maintains and may even increase variation in natural populations by favoring extreme phenotypes, individuals with extreme values for a trait have greater reproductive success than individuals with intermediate values.
The term "eusocial" was introduced in 1966 by Suzanne Batra, who used it to describe nesting behavior in Halictine bees. Batra observed the cooperative behavior of the bees, males and females alike, as they took responsibility for at least one duty (i.e., burrowing, cell construction, oviposition) within the colony