For example, the atomic mass of an oxygen atom is 16.00 amu; that means the molar mass of an oxygen atom is 16.00 g/mol. Further, if you have 16.00 grams of oxygen atoms, you know from the definition of a mole that your sample contains 6.022 x 10^23 oxygen atoms.
<span>Answer:
From the ideal gas law, MM=mRTPV; where MM = molecular mass; m = mass; P = pressure in atmospheres; V= volume in litres; R = gas constant with appropriate units.
So, 0.800â‹…gĂ—0.0821â‹…Lâ‹…atmâ‹…Kâ’1â‹…molâ’1Ă—373â‹…K0.256â‹…LĂ—0.987â‹…atm = 97.0 gâ‹…molâ’1.
nĂ—(12.01+1.01+2Ă—35.45)â‹…gâ‹…molâ’1 = 97.0â‹…gâ‹…molâ’1.
Clearly, n = 1. And molecular formula = C2H2Cl2.
I seem to recall (but can't be bothered to look up) that vinylidene chloride, H2C=C(Cl)2 is a low boiling point gas, whereas the 1,2 dichloro species is a volatile liquid. At any rate we have supplied the molecular formula as required.</span>
<h3>
Answer:</h3>
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
<h3>
Explanation:</h3>
We are given the Equation;
CaCl₂ + Na₃PO₄→ Ca₃(PO₄)₂ + NaCl
Assuming the question requires us to balance the equation;
- A balanced chemical equation is one that has equal number of atoms of each element on both sides of the equation.
- Balancing chemical equations ensures that they obey the law of conservation of mass in chemical equations.
- According to the law of conservation of mass in chemical equation, the mass of the reactants should always be equal to the mass of the products.
- Balancing chemical equations involves putting appropriate coefficients on the reactants and products.
In this case;
- To balance the equation we are going to put the coefficients 3, 2, 1, and 6.
- Therefore; the balanced equation will be;
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
Answer:
I believe the answer is A (changes in air temperature result in differences in air pressure which causes wind). Hope this helps
Explanation: