Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows:

It is essential for accurate results that the correct volume of blood is sampled to achieve a correct concentration (and dilution, if liquid heparin is used), and that blood and anticoagulant are well mixed immediately after sampling.
Answer:
60-20=40km west because the direction Will favour whichever direction is bigger
1) Magnesium Chloride
2) Sodium Bromide
3) Magnesium Oxide
4) Nickel (III) Fluoride
5) Aluminum Chloride
6) <span>Rubidium Sulfide
7) Gallium Nitride
8) Calcium Sulfide
9) </span><span>Lead (IV) Oxide
10) </span><span>Cobalt (II) Oxide
</span>11) B<span>eryllium Sulfide
12) </span><span>Cesium Nitride</span>