Complete question:
ΔU for a van der Waals gas increases by 475 J in an expansion process, and the magnitude of w is 93.0 J. calculate the magnitude of q for the process.
Answer:
The magnitude of q for the process 568 J.
Explanation:
Given;
change in internal energy of the gas, ΔU = 475 J
work done by the gas, w = 93 J
heat added to the system, = q
During gas expansion process, heat is added to the gas.
Apply the first law of thermodynamic to determine the magnitude of heat added to the gas.
ΔU = q - w
q = ΔU + w
q = 475 J + 93 J
q = 568 J
Therefore, the magnitude of q for the process 568 J.
Answer: northern hemisphere
Explanation: I looked it up. Plus I took a test with this question and when the teacher went over the answer i got it right.
Answer:All materials are made up from atoms, and all atoms consist of protons, neutrons and electrons. Protons, have a positive electrical charge. Neutrons have no electrical charge (that is they are Neutral), while Electrons have a negative electrical charge. Atoms are bound together by powerful forces of attraction existing between the atoms nucleus and the electrons in its outer shell.
All materials are made up from atoms, and all atoms consist of protons, neutrons and electrons. Protons, have a positive electrical charge. Neutrons have no electrical charge (that is they are Neutral), while Electrons have a negative electrical charge. Atoms are bound together by powerful forces of attraction existing between the atoms nucleus and the electrons in its outer shell.
Electrical Voltage
Voltage, ( V ) is the potential energy of an electrical supply stored in the form of an electrical charge. Voltage can be thought of as the force that pushes electrons through a conductor and the greater the voltage the greater is its ability to “push” the electrons through a given circuit. As energy has the ability to do work this potential energy can be described as the work required in joules to move electrons in the form of an electrical current around a circuit from one point or node to another.
Then the difference in voltage between any two points, connections or junctions (called nodes) in a circuit is known as the Potential Difference, ( p.d. ) commonly called the Voltage Drop.
he Potential difference between two points is measured in Volts with the circuit symbol V, or lowercase “v“, although Energy, E lowercase “e” is sometimes used to indicate a generated emf (electromotive force). Then the greater the voltage, the greater is the pressure (or pushing force) and the greater is the capacity to do work.
A constant voltage source is called a DC Voltage with a voltage that varies periodically with time is called an AC voltage. Voltage is measured in volts, with one volt being defined as the electrical pressure required to force an electrical current of one ampere through a resistance of one Ohm. Voltages are generally expressed in Volts with prefixes used to denote sub-multiples of the voltage such as microvolts ( μV = 10-6 V ), millivolts ( mV = 10-3 V ) or kilovolts ( kV = 103 V ). Voltage can be either positive or negative.
Each column is called a group<span>. The elements in each </span>group have<span> the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.</span>
Answer:
10 molecules of NH₃.
Explanation:
N₂ + 3H₂ --> 2NH₃
As the N₂ supply is unlimited, what we need to do to solve this problem is <u>convert molecules of H₂ into molecules of NH₃</u>. To do so we use the <em>stoichiometric coefficients</em> of the balanced reaction:
- 15 molecules H₂ *
= 10 molecules NH₃
10 NH₃ molecules could be prepared from 15 molecules of H₂ and unlimited N₂.