<h3>
Answer:</h3>
6 hours
<h3>
Step-by-step explanation:</h3>
The two hoses together take 1/3 the time (4/12 = 1/3), so the two hoses together are equivalent to 3 of the first hose.
That is, the second hose is equivalent to 2 of the first hose. Two of the first hose could fill the vat in half the time one of them can, so 6 hours.
The second hose alone can fill the vat in 6 hours.
_____
The first hose's rate of doing work is ...
... (1 vat)/(12 hours) = (1/12) vat/hour
If h is the second hose's rate of doing work, then working together their rate is ...
... (1/12 vat/hour) + h = (1/4 vat/hour)
... h = (1/4 - 1/12) vat/hour = (3/12 -1/12) vat/hour = 2/12 vat/hour
... h = 1/6 vat/hour
so will take 6 hours to fill 1 vat.
Answer:
38
Step-by-step explanation:
-(5×-7-3)
-(-35-3)
-(-38)
38
Answer:
B
Step-by-step explanation:
Opposite is 1.9
Assuming a diagram similar to the one I've attached, ∠<em>YVZ</em> is a vertical angle to ∠<em>WVX</em>, which means they have an equal measure. Additionally, ∠<em>WVZ</em> and ∠<em>WVX</em> form a linear pair, which means they are supplementary (sum to 180°). That means we start out with the equation

We combine our like terms (the
<em>x</em>'s get combined, then the constants get combined) and have:

Cancel the 9 first by subtraction:

Cancel the 19 by division:

Since we know that our angle we're looking for, ∠<em>YVZ</em>, is the same measure as ∠<em>WVX</em>, we substitute 9 in for <em>x</em>:
8(9)+28=72+28=100°