Yes, it is possible to decrease the resistance of a wire without changing the material it made out of. This is because, there are many factors which affect the resistance of a wire. These factors can be manipulated to change the resistance of the wire. The factors include: cross sectional area of the wire, length of the wire, temperature and the material of the wire. The other three factors can be manipulated to change the resistance of the wire without changing the material of the wire.
Answer:
Semiconductors are poor conductors at low temperatures, but their resistance decreases with increasing temperature.
Explanation:
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
The statement which best describes the electrical conductivity of metals and semiconductors is that semiconductors are poor conductors at low temperatures, but their resistance decreases with increasing temperature.
This ultimately implies that, semiconductors are typically an insulator (poor conductor) at low temperatures and a good conductor at high temperatures.
Additionally, conduction involves the transfer of electric charge or thermal energy due to the movement of particles. When the conduction relates to electric charge, it is known as electrical conduction while when it relates to thermal energy, it is known as heat conduction.
Answer: try to understand coz the question is not valid
Explanation: Explain the relationship between forward and reverse reactions at equilibrium and predict how changing the amount of a reactant or product (creating a stress) will affect that relationship.For example (select one from each underlined section)If the amount of (reactant or product) increases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. If the amount of (reactant or product) decreases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. Procedure: Access the virtual lab and complete the inquiry experiment
Answer:
Is there any other part to this question? If not I'm pretty sure the answer is 205.5 kJ
Explanation: