Answer:
pH = 4.25
Explanation:
A solution composed of a weak acid and its conjugate base is a <em>buffer solution</em>. To calculate the pH of a buffer solution we use the Henderson-Hasselbach equation:
pH = pKa + log ([conjugate base]/[weak acid]
In this case, we have the following data:
[conjugate base] = [sodium benzoate] = 0.230 M
[weak acid] = [benzoic acid] = 0.205 M
The pKa of benzoic acid is 4.2. So, we introduce the data in the equation:
pH = 4.2 + log (0.230 M/0.205 M) = 4.2 + 0.050 = 4.25
On temperature 25°C (298,15K) and pressure of 1 atm each gas has same amount of substance:
n(gas) = p·V ÷ R·T = 1 atm · 20L ÷ <span>0,082 L</span>·<span>atm/K</span>·<span>mol </span>· 298,15 K
n(gas) = 0,82 mol.
1) m(He) = 0,82 mol · 4 g/mol = 3,28 g.
d(He) = 10 g + 3,28 g ÷ 20 L = 0,664 g/L.
2) m(Ne) = 0,82 mol · 20,17 g/mol = 16,53 g.
d(Ne) = 26,53 g ÷ 20 L = 1,27 g/L.
3) m(CO) = 0,82 mol ·28 g/mol = 22,96 g.
d(CO) = 32,96 g ÷ 20L = 1,648 g/L.
4) m(NO) = 0,82 mol ·30 g/mol = 24,6 g.
d(NO) = 34,6 g ÷ 20 L = 1,73 g/L.
Mix aloe vera and honey or olive oil if you want. the internet says yogurt but thats disgusting so dont do that but if you wanna do that then thats fine go for it.
At the half equivalence point [HA] = [A-] and pH = pKa
<span>if Ka is 5.2e-5 then pKa = pH = 4.28</span>
Yes it is a exothermic reaction.