Answer:
Explanation:
The chemical equation is:
There are several definitions of acid and bases: Arrhenius', Bronsted-Lowry's and Lewis'.
Bronsted-Lowry model defines and <em>acid</em> as a donor of protons, H⁺.
In the given equation HNO₃ is such substance: it releases an donates its hdyrogen to form the H₃O⁺ ion.
On the other hand, a <em>base</em> is a substance that accepts protons.
In the reaction shown, H₂O accepts the proton from HNO₃ to form H₃O⁺.
Thus, H₂O is a base.
In turn, on the reactant sides the substances can be classified as acids or bases.
H₃O⁺ contain an hydrogen that can be donated and form H₂O; thus, it is an acid (the conjugated acid), and NO₃⁻ can accept a proton to form HNO₃; thus it is a base (the conjugated base).
Answer:
Pure Substances are made of the same material throughout and have the same properties throughout. Pure substances cannot be separated into other substances. Some examples are carbon, iron, water, sugar, salt, nitrogen gas, and oxygen gas. ... If so, you have a pure substance.
Hope this helps!!
Can I be Brainliest? ☺
Answer:
0.1832 moles of ethyl acetate (
)
Explanation:
1. Find the balanced chemical equation:
In the production of ethyl acetate, the acetic acid
reacts with ethanol to produce ethyl acetate
and water, that is:

2. Find the theoretical maximum moles of ethyl acetate
:
As the problem says that the acetic acid
is the limiting reagent, use stoichiometry to find the moles of ethyl acetate produced:
