Answer:
The presence of nitrogen in the organic compound is detected by fusing organic compounds with sodium metal to give sodium cyanide (NaCN) soluble in water. This is converted into sodium ferrocyanide by the addition of sufficient quantities of ferrous sulphate.
Explanation:
It is what I found online.
Answer:
10.9%.
Explanation:
The first thing to do in order to solve this question is to Determine the value for the volume of the the cube. This can be done by taking the cube root of the length of the cube;
The volume of the cube = (length of the cube)^3 = length × length × length = 1.72 × 1.72 × 1.72 =( 1.72)^3 = 5.09cm^3.
The next thing you do is to Determine the exponential density, the can be done by using the formula below;
The exponential density = mass/ volume = 55. 786/ 5.09 = 10.96 g/cm^3.
Therefore, the percent error = (true density of the cube - exponential density of the cube)÷ true density of the cube × 100.
Hence, the percent error = 12.30 - 10.96/12.30 × 100 = 10.9%.
Answer:
The order of reactivity towards electrophilic susbtitution is shown below:
a. anisole > ethylbenzene>benzene>chlorobenzene>nitrobenzene
b. p-cresol>p-xylene>toluene>benzene
c.Phenol>propylbenzene>benzene>benzoic acid
d.p-chloromethylbenzene>p-methylnitrobenzene> 2-chloro-1-methyl-4-nitrobenzene> 1-methyl-2,4-dinitrobenzene
Explanation:
Electron donating groups favor the electrophilic substitution reactions at ortho and para positions of the benzene ring.
For example: -OH, -OCH3, -NH2, Alkyl groups favor electrophilic aromatic substitution in benzene.
The -I (negative inductive effect) groups, electron-withdrawing groups deactivate the benzene ring towards electrophilic aromatic substitution.
Examples: -NO2, -SO3H, halide groups, Carboxylic acid groups, carbonyl gropus.
When an electron absorbs energy, it will move up from a lower energy level to a higher energy level, called the "excited state" of the negatively-charged subatomic particle.<span> However, the absorbed energy is released within a small interval of time and the electron moves down to its "ground state."</span>