The first one. The E and B chatacteristic are perpendicular to eachother. The direction of the wave can be found by the right hand rule.
Answer:
52.5°C
Explanation:
The final enthalpy is determined from energy balance where initial enthalpy and specific volume are obtained from A-12 for the given pressure and state
mh1 + W = mh2
h2 = h1 + W/m
h1 + Wα1/V1
242.9 kJ/kg + 2.35.0.11049kJ/ 0.35/60kg
=287.4 kJ/kg
From the final enthalpy and pressure the final temperature is obtained A-13 using interpolation
i.e T2 = T1 + T2 -T1/h2 -h1(h2 - h1)
= 50°C + 60 - 50/295.15 - 284.79
(287.4 - 284.79)°C
= 52.5°C
This is a question that would have literally have taken two seconds to look up on google but the answer is 1.88 years.
Answer:
The centripetal acceleration of the car is
.
Explanation:
Let the mass of the car, 
Diameter of the circular path, d = 100 m
Speed of car, v = 20 m/s
Radius, r = 50 m
When an object moves in a circular path, the centripetal acceleration acts on it. It is given by :



So, the centripetal acceleration of the car is
. Hence, this is the required solution.
Answer:
Distance of 400m.
Explanation:
Use your kinematics equation to solve for distance (we can use kinematics b/c acceleration is constant).
d = (initial velocity x time) + 1/2 at^2
d = (20 x 10) + 1/2 (4) (10)^2
d = 200 + 200
d = 400 m