Imagine living off nothing but coal and water and still having enough energy to run at over 100 mph! That's exactly what a steam locomotive can do. Although these giant mechanical dinosaurs are now extinct from most of the world's railroads, steam technology lives on in people's hearts and locomotives like this still run as tourist attractions on many heritage railways.
Steam locomotives were powered by steam engines, and deserve to be remembered because they swept the world through the Industrial Revolution of the 18th and 19th centuries. Steam engines rank with cars, airplanes, telephones, radio, and television among the greatest inventions of all time. They are marvels of machinery and excellent examples of engineering, but under all that smoke and steam, how exactly do they work?
Answer:
Along the anode-cathode axis
Explanation:
The Anode Heel Effect, in an X-ray tube states that the direction of emission of X-rays by the anode along the cathode-anode axis causes a variation in the intensity of X-rays.
The geometry of the anode causes the X-ray emitted perpendicular to the cathode-anode axis less intense than the X-rays emitted towards the cathode along the axis.
<u>Answer:
</u>
Distance traveled = 70 meters
Displacement = 36.06 meters
<u>Explanation:
</u>
Let north be positive Y and east be positive X
10 meters north, displacement = 10 j meters
20 meters west, displacement = -20 i meters
40 meters south, displacement = -40 j meters
Total displacement = (10 j - 20 i – 40 j) meters = (- 20 i - 30 j) meters
Magnitude of displacement =
Distance traveled = 10+20+40 = 70 meters
5.91(approx) seconds just divide velocity by acceleration