The answers are B, C, E and F.
Atoms from an element is mostly made of protons, neutrons, and electrons. Proton numbers are like a class number for each element. Each element has their own and they're all different. And the number of protons are equal to the number of electrons. Therefore, B is correct.
Isotopes. It's different atoms from a same element that has the same number of protons but different number of neutrons. For example in hydrogen, there's 3 Isotopes for hydrogen. Therefore, C is correct.
Again, proton for the same element is never changed, even if they're different Isotopes. So, E is correct.
Isotopes, again, different elements may have different Isotopes. Some has only 1, others may have a few or more. So, F is correct too.
h =(3.7 - .58)m = 3.12m
Now put PE into KE and we have to use the formula:
√2gh (g = gravity and h = height) therefor:
√2 x 9.8 x 3.12
= 7.82m/s
I hope this helps!
Answer:
1.758820×10^11(-2.5i-0.8j) m/s^2
Explanation:
From the question, the parameters given are; E=(2.80i+ 5.20j) v/m, a uniform magnetic field,B= 0.400K T, acceleration, a= ??? and velocity vector, v= 11.0i metre per seconds (m/s)...
We can solve this problem using the formula below;
Ma= q[E+V × B] ---------------(1).
Note: q is negative, m= mass of electron.
Making acceleration,a the subject of the formula and substituting the parameters into equation (1);
a= -e/m × (2.5i + 5.2j +11.0i × 0.400K)
a= -e/m × (2.5i+5.2j-4.4j)
a= e/m × (-2.5i - 0.8j)
e/m= 1.758820×10^11 c/kg
Therefore, slotting in the value of charge to mass(e/m) ratio;
a= 1.7588×10^11×(-2.5i-0.8j) m/s^2
To establish the age of a rock or a fossil, researchers use some type of clock to determine the date it was formed. Geologists commonly use radiometric dating methods, based on the natural radioactive decay of certain elements such as potassium and carbon, as reliable clocks to date ancient events.