Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
Their combined momentum after they meet is 0 .
Answer:
maximum speed of the bananas is 18.8183 m/s
Explanation:
Given data
amplitude A = 23.195 cm
spring constant K = 15.2676 N/m
mass of the bananas m = 56.9816 kg
to find out
maximum speed of the bananas
solution
we know that radial oscillation frequency formula that is = √(K/A)
radial oscillation frequency = √(15.2676/23.195)
radial oscillation frequency is 0.8113125 rad/s
so maximum speed of the bananas = radial oscillation frequency × amplitude
maximum speed of the bananas = 0.8113125 × 23.195
maximum speed of the bananas is 18.8183 m/s
The bottleneck event of the plants in an area results in secondary succession.
<h2>What is bottleneck event?</h2>
A bottleneck is an event that drastically reduces the population size of an organism. The bottleneck may be caused by various events, such as an environmental disaster, the hunting or habitat destruction that results in the deaths of organisms.
<h3>Secondary succession</h3>
Secondary succession is a type of ecological succession in which plants and animals recolonize a habitat after a major disturbance such as a devastating flood, wildfire, landslide, lava flow, or human activity e.g., farming or road or building construction.
Learn more about succession here: brainly.com/question/1212975