Answer:
The acceleration due to gravity at Pluto is 0.0597 m/s^2.
Explanation:
Length, L = 1 m
10 oscillations in 257 seconds
Time period, T = 257/10 = 25.7 s
Let the acceleration due to gravity is g.
Use the formula of time period of simple pendulum
Answer:
Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as
We have the length of the pendulum is L=0.81 meters, then we have
(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as
where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that
And
Solving for Y
The potential energy is
The mechanical energy is, then
(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know
Equating to the mechanical energy of the system (M)
Solving for v
Answer:
Explanation:
As we know that there is no external torque on the system of two disc
then the angular momentum of the system will remains conserved
So we will have
now we have
also we have
now from above equation we have
now we have
Answer : Zamir's displacement and Talia's displacement is equal.
Explanation :
Displacement is explained to be the changing position of an object.
Zamir covers total distance 27 m and Talia covers total distance 19 m but Zamir's initial and final position and Talia's initial and final position is same.
So, we can say that Zamir's displacement and Talia's displacement is equal.