Answer:
42.2 moles of H3PO4
Explanation:
The equation of the reaction is:
P2O5(s) + 3 H2O(l) ⟶ 2 H3PO4.
First we must obtain the number of moles of P2O5 from
Number of moles of P2O5= reacting mass of P2O5/molar mass of P2O5
Molar mass of P2O5= 141.9445 g/mol
Number of moles= 3000g/141.9445 g/mol = 21.1 moles of P2O5
From the reaction equation;
1 mole of P2O5 yields 2 moles of H3PO4
21.1 moles of P2O5 will yield 21.1 ×2/ 1 = 42.2 moles of H3PO4
Why chlorine has highest electron affinity than fluorine?
This is because the atomic radius increases down a group. The electron gained ends up in the outermost shell. ... Fluorine, which is higher up the group then chlorine, has a lower electron affinity. This is because the electrons in the outermost shell of a fluorine atom are closer together.
Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
I think it is rarefaction. But im not sure