Answer:
a. If an object's speed is constant, then its acceleration must be zero.
FALSE
As we know that acceleration is defined as the rate of change in velocity

so we can not say anything about the acceleration when speed is given to as and no information is given about velocity
b. If an object's acceleration is zero, then its speed must be constant.
TRUE
As we know that acceleration is defined as the rate of change in velocity

Since we know that if acceleration is 0 then velocity must be constant and hence speed is also constant
c. If an object's velocity is constant, then its speed must be constant.
TRUE
Since velocity is constant then it shows that its magnitude and direction both are constant so its speed is also constant.
d. If an object's acceleration is zero, its velocity must be constant.
TRUE
As we know that acceleration is defined as the rate of change in velocity

Since we know that if acceleration is 0 then velocity must be constant
e. If an object's speed is constant, then its velocity must be constant.
FALSE
Speed is just the magnitude so we can not say about its direction and hence if speed is constant then velocity may or may not change
Answer:
P = 17.28*10⁶ N
Explanation:
Given
L = 250 mm = 0.25 m
a = 0.54 m
b = 0.40 m
E = 95 GPa = 95*10⁹ Pa
σmax = 80 MPa = 80*10⁶ Pa
ΔL = 0.12%*L = 0.0012*0.25 m = 3*10⁻⁴ m
We get A as follows:
A = a*b = (0.54 m)*(0.40 m) = 0.216 m²
then, we apply the formula
ΔL = P*L/(A*E) ⇒ P = ΔL*A*E/L
⇒ P = (3*10⁻⁴ m)*(0.216 m²)*(95*10⁹ Pa)/(0.25 m)
⇒ P = 24624000 N = 24.624*10⁶ N
Now we can use the equation
σ = P/A
⇒ σ = (24624000 N)/(0.216 m²) = 114000000 Pa = 114 MPa > 80 MPa
So σ > σmax we use σmax
⇒ P = σmax*A = (80*10⁶ Pa)*(0.216 m²) = 17280000 N = 17.28*10⁶ N
They attract and stick together
Answer:

Explanation:
Given
--- initial volume
--- initial temperature
--- final temperature
--- coefficient of thermal expansion:
Required
The change in volume
To do this, we make use of cubic expansivity formula

So, we have:



The volume will expand by 