I think you need more information like the force of gravity and the force of the three people. Once you combine the two, however, you should get the net force.
Answer:
a) The potential energy in the system is greatest at X.
Explanation:
Let be X the point where a ball rests at the top of a hill. By applying the Principle of Energy Conservation, the total energy in the physical system remains constant and gravitational potential energy at the top of the hill is equal to the sum of kinetic energy, a lower gravitational energy and dissipated work due to nonconservative forces (friction, dragging).

Conclusions are showed as follows:
a) The potential energy in the system is greatest at X.
b) The kinetic energy is the lowest at X and Z.
c) Total energy remains constant as the ball moves from X to Y.
Hence, the correct answer is A.
Answer: 100 miles per hour
Today, tubular steel tracks and polyurethane wheels allow coasters to travel over 100 miles per hour (160 km/h), while even taller, faster, and more complex roller coasters continue to be built. Hopefully i helped
Explanation:
Answer:
v after 5s = 0.25 m/s, it took 10s to stop, it has traveled 2.5m before stopping
Explanation
We can use the equation of motion with constant acceleration
Given: v0= 0.5 m/s a= -0.05 m/s²
v(5s) = v0 + a×t = 0.25 m/s
Stop => v=0 => v0 + a×t = 0 => t=10s
Distance at t=10s ⇒ x(10) = 0.5×10 + 0.5x(-0.05)x10² = 2.5m
This is weird.
All three 'choices' are true.
Line um up. (a) shows how to solve the problem. (b) does it. and (c) is the answer.