This took me a short while to figure out, but I am still not entirely sure if this is correct, this is just from my basic understanding of Newtons Second Law of Motion.
You have a 4kg cart with a force of 20N acting on it.
The formula for working out the acceleration is.
a=Fnet÷mass
Substitute in the information.
a=20N÷4kg
Now you solve it to give you.
a=5m/s
So now what you should be able to do is figure out that after 10 seconds the cart travelling at 5m/s would have travelled 10 metres.
This is achieved by finding out how many 5's go into 10 which is 2.
So you do 5×2 which equals 10.
The 4kg cart has travelled 10 meters in 10 seconds with a force of 20N acting upon it.
I hope that this has helped you.
Very easy....4 millimeters is the growth every year..as 720 mm is the final one...we can divide it by 4mm to obtain the answer..I.E=180years
Answer:
solar to electrical yesssssiiiiirrrrrrrrrr you gonna get it wrong
Answer:
(1) 14.12 m/s
Explanation:
Given:
= initial speed of the ball = 16 m/s
= angle of the initial speed with the horizontal axis = 
= initial height of the ball from where Julie throws the ball = 1.5 m
= final position of the ball where Sarah catches the ball = 1.5 m
Let us assume the following:
= horizontal component of the initial speed
= vertical component of the initial speed
= horizontal acceleration of the ball
= vertical acceleration of the ball
The given problem is projectile motion. When the ball is thrown from the air with a speed of 16 m/s at an angle 28 degree with the horizontal axis. When the ball is in the air, it experiences an only gravitational force in the downward direction if we ignore air resistance on the ball.
This means if we break the motion of the ball along two axes and study it, we have a uniform acceleration motion in the vertical direction and a zero acceleration motion along the horizontal.
Since the ball has a zero acceleration motion along the horizontal axis, the ball must have a constant speed along the horizontal at all instant of time.
Let us find out the initial velocity horizontal component of the velocity of the ball. which is given by:

As this horizontal velocity remains constant in the horizontal motion at all instants of time. So, the horizontal component of the ball's velocity when Sarah catches the ball is 14.12 m/s.
Hence, the horizontal component of the ball's velocity when the ball is caught by Sarah is 14.12 m/s.