1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivan
3 years ago
9

Find the radius of the congruent circles. Thanks and hope you have a good rest of your day!!

Mathematics
1 answer:
Daniel [21]3 years ago
8 0

Answer:

the radius is 10 since 10 plus ten is 20

You might be interested in
Joy is making hand-painted ornaments for
Nutka1998 [239]

Answer:

1 ornament per 3 hours

in 15 hours she will have 7.5 of them done

7 0
2 years ago
Read 2 more answers
The question is: Write and solve an equation to determine the width 'w' of the flag. The length of an American flag is 1.9 times
AysviL [449]

So what is given is:

length = 1.9 * w, you want to convert this to w = ...

This is done by dividing left and right by 1.9, so you get:

length/1.9 = 1.9*w/1.9, which simplifies to w = length/1.9

Another approach is to replace the multiplication with a simpler one in your head. So in stead of reading "length = 1.9 * width, what is width?", you read "6 = 2*3, what is 3?". You'll immediately realize 3 = 6/2, and that shows you how to change the real equation, ie., width = length/1.9.




6 0
4 years ago
HEYYYY YOU YEA YOU!!!
Fantom [35]

Answer:

I think that school is somewhat fun, now it is just straight up boring, and yeah sometimes I feel like there are not smart people, and there are weird people, so annoying, I wish they aren't there a lot, but hey, if you can, listen to music, and maybe make some time to do what you like so you can forget about school for a little and relieve your stressssss

8 0
3 years ago
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
Question 4 of 5
Arturiano [62]

Answer:

  D.  9 cm

Step-by-step explanation:

The radius of the sphere can be found by solving the volume equation for the radius.

  V = 4/3πr³

  3V/(4π) = r³

  r = ∛(3V/(4π)) = ∛(3×3052/(4×π)) ≈ ∛728.611

  r ≈ 9.0 cm

The radius of the sphere is about 9 cm.

4 0
3 years ago
Other questions:
  • Which of the following equations is equivalent to 2log4x − log49 = 2?
    6·2 answers
  • What is the slope of this line?<br> Enter your answer as a fraction in the simplest term in the box.
    9·1 answer
  • The reflexive property of angle congruence is represented by which of the following? Question 2 options: A) If ∠A ≅ ∠B then ∠B ≅
    10·1 answer
  • What is the reciprocal of 1 and 2/3?
    10·1 answer
  • a produce stand sells roasted peanuts for $1.90 per pound. what is the coast, c, of p pounds of peanuts
    15·2 answers
  • Solve for e - 9e+4=−5e+14+13e
    15·1 answer
  • Please help!!! A plane takes off from the airport and climbs at a steady rate. If the plane travelled
    13·1 answer
  • Which of these statements describes scarcity? A. It is a situation in which people cannot pay for goods and services. B. It is a
    10·2 answers
  • 6(x-4y) does anyone know this answer
    12·1 answer
  • Find the value of x. Round to the nearest tenth.<br> 20<br> X<br> 35
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!