Answer: The average valence electron energy (AVEE) of this element =
1014.2 KJ/ mol or 1.0142mJ/mol.
Explanation:
The average valence electron energy = (number of electrons in s subshell x Ionization energy of that subshell) + (number of electrons in p subshell x Ionization energy of that subshell) / total number of electrons in both subshells of the valence shells.
The 5A elements are non-metals like Nitrogen and Phosphorus with the metallic character increasing as you go down the group, So a new 5A element will have characteristics of its group with 5 valence electron in its outermost shell represented as ns2 np3
Therefore the average valence electron energy (AVEE) of this element will be calculated as
The average valence electron energy = (2 x 1370 kJ/mol + 3 x 777 kJ/mol.) / 5
2740+2331/ 5 =5071/5
=1014.2 KJ/ mol or 1.0142mJ/mol.
Sodium/Atomic number
11
Gold/Atomic number
79
Potassium/Atomic number
19
Silicon/Atomic number
14
Climate change or it could just be Climate,
Hopefully that helps ❤
Answer:
Q=mcΔT
Explanation:
The formula for expressing the amount of heat transferred between energy stores is given by the equation. The specific heat capacity of water is 4180 J/kgoC (Joules per kilogram per degree), this means it takes 4180 J of heat energy to raise the temperature of 1 kg of water by 1oC.
#AB
Electronegativity difference=3.3-2.9=0.4.
- It's a covalent bond.
- Gaseous or solid substance.
#AC
Electronegativity difference=3.3-0.7=2.6
- Its an ionic bond.
- Solid substance.
#BC
Electronegativity difference=2.9-0.7=2.3
- It's an ionic bond
- Solid substance