Weathering and erosion produce ever smaller rock particles which,
when mixed with dust and decayed organic matter over time ,
result in different types of soil .
[hope this helps]
Answer:
d. is the hydrostatic pressure produced on the surface of a semi-permeable membrane by osmosis.
Explanation:
Osmosis -
It is the flow of the molecules of solvent from a region of higher concentration towards the region of lower concentration via a semipermeable membrane , is known as osmosis.
Osmotic pressure -
It refers to the minimum amount of pressure , which is required to be applied to the solution in order to avoid the flow of pure solvent via the semipermeable membrane , is referred to as osmotic pressure.
Or in simple terms ,
Osmotic pressure is the pressure applied to resists the process of osmosis.
Hence ,
From the given options in the question,
The correct option regarding osmotic pressure is d.
Answer:
<u></u>
Explanation:
<u>1. Balanced molecular equation</u>

<u>2. Mole ratio</u>

<u>3. Moles of HNO₃</u>
- Number of moles = Molarity × Volume in liters
- n = 0.600M × 0.0100 liter = 0.00600 mol HNO₃
<u>4. Moles Ba(OH)₂</u>
- n = 0.700M × 0.0310 liter = 0.0217 mol
<u>5. Limiting reactant</u>
Actual ratio:

Since the ratio of the moles of HNO₃ available to the moles of Ba(OH)₂ available is less than the theoretical mole ratio, HNO₃ is the limiting reactant.
Thus, 0.006 moles of HNO₃ will react completely with 0.003 moles of Ba(OH)₂ and 0.0217 - 0.003 = 0.0187 moles will be left over.
<u>6. Final molarity of Ba(OH)₂</u>
- Molarity = number of moles / volume in liters
- Molarity = 0.0187 mol / (0.0100 + 0.0031) liter = 0.456M
Answer: 40.1%
Explanation: The mass of calcium in this compound is equal to 40.1 grams because there's one atom of calcium present and calcium has an atomic mass of 40.1 . The molar mass of the compound is 100.1 grams. Using the handy equation above, we get: Mass percent = 40.1 g Ca⁄100.1 g CaCO3 × 100% = 40.1% Ca.