E=hc/λ =6.626×10^-34×3 ×10^8 / 3×10^7 × 10^-9 = 6.626×10 ^-24J.
Answer:
<em>What can be added to an atom to cause a nonvalence electron in the atom to temporarily become a valence electron </em>is<u><em> energy</em></u><em>.</em>
Explanation:
The normal state of the atoms, where all the electrons are occupying the lowest possible energy level, is called ground state.
The <em>valence electrons</em> are the electrons that occupy the outermost shell, this is the electrons in the highest main energy level (principal quantum number) of the atom.
So, a <em>nonvalence electron</em> occupies an orbital with less energy than what a valence electron does; in consequence, in order to a nonvalence electron jump from its lower energy level to the higher energy level of a valence electron, the former has to absorb (gain) energy.
This new state is called excited state and is temporary: the electron promoted to the higher energy level will emit the excess energy, in the form of light (photons), to come back to the lower energy level and so the atom return to the ground state.
Answer:
The manufacturing processes for liquefied petroleum gas are designed so that the majority, if not all, of the sulfur compounds are removed. The total sulfur level is therefore considerably lower than for other crude oil-based fuels and a maximum limit for sulfur content helps to define the product more completely. The sulfur compounds that are mainly responsible for corrosion are hydrogen sulfide, carbonyl sulfide and, sometimes, elemental sulfur. Hydrogen sulfide and mercaptans have distinctive unpleasant odors. A control of the total sulfur content, hydrogen sulfide and mercaptans ensures that the product is not corrosive or nauseating. Stipulating a satisfactory copper strip test further ensures the control of the corrosion.
The charge of a proton is positive.
D would be your best bet because evaporation occurs when water is heated, it then vibrates and then magic!