The correct option is A.
To calculate the binding energy, you have to find the mass defect first.
Mass defect = [mass of proton and neutron] - Mass of the nucleus
The molar mass of thorium that we are given in the question is 234, the atomic number of thorium is 90, that means the number of neutrons in thorium is
234 - 90 = 144.
The of proton in thourium is 90, same as the atomic number.
Mass defect = {[90 * 1.00728] +[144* 1.00867]} - 234
Note that each proton has a mass of 1.00728 amu and each neutron has the mass of 1.00867 amu.
Mass defect = [90.6552 + 145.24848] - 234 = 1.90368 amu.
Note that the unit of the mass is in amu, it has to be converted to kg
To calculate the mass in kg
Mass [kg] = 1.90368 * [1kg/6.02214 * 10^-26 = 3.161135 * 10^-27
To calculate the binding energy
E = MC^2
C = Speed of light constant = 2.9979245 *10^8 m/s2
E = [3.161135 * 10^-27] * [2.9979245 *10^8]^2
E = 2.84108682069 * 10^-10.
Note that we arrive at this answer because of the number of significant figures that we used.
So, from the option given, Option A is the nearest to the calculated value and is our answer for this problem.
Answer:
I don't know chemistry
Explanation:
because this is the hardest subject in the world nobody can solve it so do yourself ok Beta
Answer:
Given molecules are vinegar and triglycerides.
Explanation:
The dipole is a vector quantity and it is heading from less electronegative atom to more electronegative atom in a polar covalent bond.
The structures and the bond dipoles in the given molecules are shown below:
Answer:
Therefore, the rate of change in the amount of salt is 

Explanation:
Given:
Initial volume of water
lit
Flowing rate = 5 
The rate of change in the amount of salt is given by,
( Rate of salt enters tank - rate of sat leaves tank )
Since tank is initially filled with water so we write that,

Let amount of salt in the solution is
,


Therefore, the rate of change in the amount of salt is 

<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which do not get involved in the chemical equation. It is also defined as the ions which are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of ammonium perchlorate and water is given as:

Ionic form of the above equation follows:

Ammonium hydroxide will not dissociate into its ions because it is a weak base.
As, chlorate ions are present on both the sides of the reaction, thus, it will not be present in the net ionic equation.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is given above.