<h3>
Answer:</h3>
1379.4 Joules
<h3>
Explanation:</h3>
- The quantity of heat is calculated multiplying the mass of a substance by heat capacity and the change in temperature.
Therefore;
Quantity of heat = Mass × specific heat capacity × Change in temperature
Q = mcΔT
In this case;
The substance dissolved in water gained heat while water lost heat energy.
Thus, Heat gained by the substance = heat lost by water
Heat associated with the water
Mass of water = 75 g
Change in temperature = 4.4°C
Specific heat capacity = 4.18 J/g·⁰C
Heat = mcΔT
= 75 g × 4.18 J/g·⁰C × 4.4 °C
=1379.4 Joules
Soluble means it can be dissolved
Insoluble means it can't be dissolved
The number of moles in each sample will be 0.391 moles, 30.7 moles, 0.456 moles, and 1350 moles
<h3>What is the number of moles?</h3>
The number of moles of a substance is the ratio of the mass of the substance to the molar mass.
In other words; mole = mass/molar mass.
Thus:
- moles of 18.0 g
= 18.0/46
= 0.391 moles
- moles of 1.35 kg
= 1350/44
= 30.7 moles
- moles of 46.1 g
= 46.1/101.1
= 0.456 moles
- moles of 191.8 kg
= 191800/142
= 1350 moles
More on the number of moles of substances can be found here: brainly.com/question/1445383
#SPJ1
Answer:
1.88 × 10²² Molecules of CO
Explanation:
At STP for an ideal gas,
Volume = Mole × 22.4 L/mol
Or,
Mole = Volume / 22.4 L/mol
Mole = 0.7 L / 22.4 L/mol
Mole = 0.03125 moles
Now,
No. of Molecules = Moles × 6.022 × 10²³ Molecules/mol
No. of Molecules = 0.03125 × 6.022 × 10²³ Molecules/mol
No. of Molecules = 1.88 × 10²² Molecules of CO
The arrows represent the movement of starting substances