A method that can be used to find limiting reactants is to divide the number of moles of known substances by their respective coefficients, and small or exhausted reactants become a limiting reactant
To solve this question, we need to use the Avogadro's Number, which is a constant first discovered by Amadeo Avogadro, an Italian scientist. He discovered that in a mole of a substance, there are 6,02*10²³ molecules. Using this relationship, we apply the following conversion factor:
So, 8,50 * 10²⁴ molecules of Na₂SO₃ represent 14,12 moles of Na₂SO₃
Firstly, we need to find the mass of the oxygen in the oxide. That is 4.94 - 3.06 = 1.88g
Now, we will need to get the number of moles and this can be obtained by dividing the masses by the atomic mass units. The atomic mass units of chromium and oxygen are 52 and 16 respectively. The division is obtained as follows:
Cr = 3.06/52 = 0.06
O = 1.88/16 = 0.12
We then divide by the smallest, which is that of the chromium.
Cr = 0.06/0.06 = 1
O = 0.12/0.06 = 2
The simplest formula is the empirical formula and it is thus given by CrO2
Considering the reaction stoichiometry and Avogadro's Number, the mass of barium chloride produced is 21.6 grams.
<h2>Balanced reaction</h2>
The balanced reaction is
2 HCl + Ba → BaCl₂ + H₂
<h2>Moles of HCl that react</h2>
Avogadro's Number is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023×10²³ particles per mole. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 6.023×10²³ molecules are contained in 1 mole of HCl, then 1.25×10²³ molecules are contained in how many moles of HCl?
amount of moles of HCl= (1.25×10²³ molecules × 1 mole)÷ 6.023×10²³ atoms
<u><em>amount of moles of HCl= 0.2075 moles</em></u>
Then, 0.2075 moles of HCl react.
<h2>Reaction stoichiometry</h2>
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
HCl: 2 moles
Ba: 1 mole
BaCl₂: 1 mole
H₂: 1 mole
<h2>Mass of barium chloride produced</h2>
Then you can apply the following rule of three: if by stoichiometry 2 moles of HCl produce 1 mole of BaCl₂, 0.2075 moles of HCl will produce how many moles of BaCl₂?
<u><em>amount of moles of BaCl₂= 0.10375 moles</em></u>
Being the molar mass of BaCl₂ 208.24 g/mole, then the mass of barium chloride produced is calculated as:
Finally, the mass of barium chloride produced is 21.6 grams.