Answer: (B) Pressure is due to the collisions of the gas particles with the walls of the container.
Option B helps to explain the factor behind gas collision under high pressure.
Explanation: Kinetic molecular theory explains the behaviour and movement of gas particles when they are in motion. It states that gas particles are always in continuous motion and are perfectly elastic in nature.
Kinetic molecular theory can be explained using both Boyle's law and Charles's law.
•Few Assumptions of Kinetic Molecular Theory.
1. Gas particles are always in motion and they collide with the walls of their container.
2. The space occupied by a gas particles is negligible in comparison to the volume of the gas
Answer:
The reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
- So, according to Le Chatelier's principle, removing the product (N₂O₃) from the system means decreasing the concentration of the products; thus, the reaction will proceed forward to produce more product to minimize the stress of removing N₂O₃ from the system.
- <em>So, the reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
</em>
<em></em>
7 strong acids are strong electrolytesHCl, HBr, HI, HNO3, HCIO3, HCIO4, and H2SO4
3 strong bases are strong electrolytes<span>OH, KOH, and NaOH</span>
Acid rain falls in areas that have air pollution. (<span>Acid rain is caused by emissions of </span>sulfur dioxide<span> and </span>nitrogen oxide)
Answer:
d= 50.23 g/cm³
Explanation:
Given data:
radius = 137.9 pm
mass is = 5.5 × 10−22 g
density = ?
Solution:
volume of sphere= 4/3π r³
First of all we calculate the volume:
v= 4/3π r3
v= 1.33× 3.14× (137.9)³
v= 1.33 × 3.14 × 2622362.939 pm³
v= 1.095 × 10∧7 pm³
v= 1.095 × 10∧-23 cm³
Formula:
Density:
d=m/v
d= 5.5 × 10−22 g/ 1.095 × 10∧-23 cm³
d= 5.023 × 10∧+1 g/cm³
d= 50.23 g/cm³