Answer:
Ke = 34570.707
Explanation:
- H2(g) + Br2(g) → 2 HBr(g)
equilibrium constant (Ke):
⇒ Ke = [HBr]² / [Br2] [H2]
∴ [HBr] = (37.0 mol) / (2 L) = 18.5 mol/L
∴ [Br2] = (0.110 mol) / (2 L) = 0.055 mol/L
∴ [H2] = (0.360 mol) / (2 L) = 0.18 mol/L
⇒ Ke = (18.5 mol/L)² / (0.055 mol/L)(0.18 mol/L)
⇒ Ke = 34570.707
<span>The correct option is C. The concentration of phosphate inside the cytosol is already greater than the concentration of phosphate in the surrounding fluid, yet, the cell still want to move more phosphate into the cell. To do this, energy is needed to move the phosphate ions against the concentration gradient, so the type of transportation requires is ACTIVE TRANSPORT.</span><span />
Mass is equal to protons plus neutrons
To find the protons its the atomic number