<span>To solve this we assume that the gas inside the balloon is an ideal </span>gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant volume pressure and number of moles of the gas
the ratio of T and P is equal to some constant. At another set of condition, the constant is still the same. Calculations are as follows:
T1/P1 = T2/P2
P2 = T2 x P1 / T1
P2 = 25 x 29.4 / 75
P2 = 9.8 kPa
Answer:

Explanation:
Hello!
In this case, since the average rate of reaction is computed as a change given by:
![r=\frac{\Delta [NH_4NO_2 ]}{\Delta t}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B%5CDelta%20%5BNH_4NO_2%20%5D%7D%7B%5CDelta%20t%7D)
In such a way, given the concentrations at the specified times, we plug them in to obtain:

Whose negative sign means the concentration decreased due to the decomposition.
Best regards!
The answer is 62.026 g/mole
Reactivity is a chemical
property of a substance. According to EPA regulations, it is normally unstable
and readily
undergoes violent change without
detonating. it can explode or violently react when exposed to water, when
heated, or under STP.
In order to properly measure the displacement, the object must be completely submerged, however in the diagram the wood is floating. So the measured displacement will only be a fraction of what it actually is.