Answer:
To find the ionic charge of an element you'll need to consult your Periodic Table. On the Periodic Table metals (found on the left of the table) will be positive. Non-metals (found on the right) will be negative.
Explanation:
The activation energy in the
diagram is 43.8 kcal/ mole, letter C. You have to note that activation energy
is the energy needed for the reaction to occur and produce products. Therefore,
the spike after H2 and I2 is reacted is the activation energy of the reaction.
Answer: Its option "A" Both A and R are true and R is the correct explanation of A.
Hope it helps
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, we proceed to compute the reacting moles of Pb(NO3)2 and KI, by using the given concentrations and densities and molar masses which are 331.2 g/mol and 166 g/mol respectively:

Next, the 0.0464 moles of Pb(NO3)2 will consume the following moles of KI (consider their 1:2 molar ratio):

Hence, as only 0.0789 moles of KI are available, KI is the limiting reactant, therefore the formed grams of PbI2, considering its molar mass of 461.01 g/mol and 2:1 molar ratio, are:

Best regards.
Below is the solution. I hope it helps.
CfVf = CiVi
<span>Cf = (CiVi)/ Vf </span>
<span>i. Cf = [ (10^-6 mol / L) (1 mL) (1L / 1000 mL) ] / [ (1kL) (1000L / 1 kL) ] = 1x10^-12 M → use as Ci in next dilution </span>
<span>ii. Cf = 1x10^-19 M → use as Ci in next dilution </span>
<span>iii. Cf = 1x10^-22 M </span>