Ommon multiples of 4<span> & </span>7<span> I wonder what are the numbers that are </span>common multiples of 4 and 7<span>. I used the </span>4<span>first - </span>4<span>,8,12,16, etc. - and the </span>7<span> is </span>7<span>,21,28, etc hope this is what you need .
.</span>
Answer:
This is not possible because the selling of number of AA batteries cannot be negative.
Step-by-step explanation:
Let us assume that the number of AAA batteries sells be x .
Let us assume that the number of AA batteries sells be y.
As given
Target sells AAA batteries for $1.10 and AA batteries for $0.50. They sold 350 total batteries earning a total of $560.
Equations becomes
x + y = 350
1.10x + 0.50y = 560
Simplify the above equation

110x + 50y = 56000
Two equations becomes
x + y = 350
110x + 50y = 56000
Multiply x + y = 350 by 50 and subtracted from 110x + 50y = 56000 .
110x - 50x + 50y - 50y = 56000 - 17500
60x = 38500

x = 641 .6 (Approx)
Put this value in the equation x + y = 350 .
641.6 + y = 350
y = 350 - 641.6
y = -291.6
This is not possible because the selling of number of AA batteries cannot be negative.
a(1) = -4(1)-3 = -4-3 = -7
a(2) = -4(2)-3 = -8-3 = -11
a(3) = -4(3)-3 = -12-3 = -15
a(4) = -4(4)-3 = -16-3 = -19
a(5) = -4(5)-3 = -20-3 = -23
So, sequence would be -7,-11,-15,-19,-23
One way is subsitute
I like solving
so
what you do is this
add the equaitons to gether to eliminate x
2y=x+5
<u>3y=-x-3 +</u>
5y=0x+2
5y=2
y=2/5
sub back
2y=x+5
2(2/5)=x+5
4/5=x+5
minus 5
4/5-25/5=x
-21/5=x
the point is (x,y) or
(-21/5,2/5)
aprox
(-4.2,0.4)
I think they wanted you to read the garph you should have attached and guess the answer
the closes one is
hmm, x=-3
and y=1
so then D is the answer
Answer:
0.07
a. the distribution will be a normal distribution.
c. we would suspicious ins there is a 2 % chance of getting the required value.
Step-by-step explanation:
Let the number of times, t be = 50
Assuming that the die is fair
standard deviation = 1.71
mean = 3.5
suppose we want tp find the probability of a 2 showing. The solution becomes:
probability = 
c. the mean of rolls will be 0.07