1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
2 years ago
13

3. After 7.9 grams of sodium are dropped into a bathtub full of water, how many grams of hydrogen gas are released?

Chemistry
2 answers:
Pavel [41]2 years ago
5 0

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}

Multiply. Hence:

=0.3463...\text{ g H$_2$}

Since we should have two significant values:

=0.35\text{ g H$_2$}

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}

So, approximately 65.2 grams of aluminum oxide is produced.

Lady_Fox [76]2 years ago
3 0

Explanation:

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}Na+H

2

O→Na

2

O+H

2

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}2Na+H

2

O→Na

2

O+H

2

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

22.990 g Na

1 mol Na

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

2 mol Na

1 mol H

2

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

1 mol H

2

2.016 g H

2

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}7.9 g Na⋅

22.990 g Na

1 mol Na

⋅

2 mol Na

1 mol H

2

⋅

1 mol H

2

2.016 g H

2

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}=7.9⋅

22.990

1

⋅

2

1

⋅

1

2.016 g H

2

Multiply. Hence:

=0.3463...\text{ g H$_2$}=0.3463... g H

2

Since we should have two significant values:

=0.35\text{ g H$_2$}=0.35 g H

2

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}O

2

+Al→Al

2

O

3

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}3O

2

+4Al→2Al

2

O

3

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

26.982 g Al

1 mol Al

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

4 mol Al

2 mol Al

2

O

3

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

1 mol Al

2

O

3

101.961 g Al

2

O

3

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}34.5 g Al⋅

26.982 g Al

1 mol Al

⋅

4 mol Al

2 mol Al

2

O

3

⋅

1 mol Al

2

O

3

101.961 g Al

2

O

3

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}=34.5⋅

26.982

1

⋅

4

2

⋅

1

101.961 g Al

2

O

3

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}=65.1852... g Al

2

O

3

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}=65.2 g Al

2

O

3

So, approximately 65.2 grams of aluminum oxide is produced.

You might be interested in
The scientist most often credited with the idea that a quantum of light (photon) can act as a particle is:
Lorico [155]
C.) It was Einstein who created quantum of light
4 0
3 years ago
Read 2 more answers
How many atoms of S are there?
jonny [76]
Atoms of sulfur = 9.60⋅g32.06⋅g⋅mol−1×6.022×1023⋅mol−1 . Because the units all cancel out, the answer is clearly a number, ≅2×1023 as required.
4 0
3 years ago
Read 2 more answers
Why is true about electron dot diagrams
vazorg [7]

Answer: The correct answer is the option: B. An element with eight valence electrons is chemically unstable.

Explanation:

Hello! Let's solve this!

We will analyze each of the options:

A. The group number of the element provides a clue to the number of valence electrons: it is correct, since it provides the number of valence electrons.

B. An element with eight valence electrons is chemically unstable: this is not correct, since elements with eight electrons in the valence shell cannot react because they already have the last complete shell. Therefore, they are chemically stable.

C. The points must be placed one at a time on each side of the chemical symbol: it is correct, because that is the way to make the point diagram.

D. An atom is chemically stable if all the points are paired: this is correct since this verifies that the point diagram has been done well.

We conclude that the correct answer is the option: B. An element with eight valence electrons is chemically unstable.

Hope this helps.....  Stay safe and have a Merry Christmas!!!!!!!!! :D

7 0
3 years ago
A compound with a molar mass of 102.133 g/mol contains an element with a subscript of 5 . the element is 58.80 g per 100.0 g com
VLD [36.1K]

Answer:

12.0108408

Explanation:

Denote the element with a letter like say X. Since it has a subscript of 5, then, X5.

Molecular mass=102.133g/mol.

% of X in compound =58.8/100

=0.588

Mass of X in the compound = 0.588*102.133 ( the % of X in compound * molar mass of compound)

= 60.054204

X5=60.054204

Then element X has a mass of 60.054204/5=12.0108408

6 0
3 years ago
Electric service has accumulated on an object is referred to as​
lara31 [8.8K]

Answer:

Static Electricity! :)

Explanation:

3 0
3 years ago
Other questions:
  • Give the mathematical relationship for an unsaturated solution in comparing Q with K sp:__________.
    13·1 answer
  • During science lab, Carl notices that when he adds water to his solid sample of anhydrous copper
    11·1 answer
  • A lab technician had a sample of radioactive Americium. He knew it was one of the isotopes listed in the table below but did not
    9·2 answers
  • Professional scientific "magazines" in which scientists write
    13·1 answer
  • A gaseous substance turns into a solid. Which best describes this change? A substance that has a specific shape changes to a sub
    13·2 answers
  • Use the drop-down menu to complete the sentence.
    6·2 answers
  • 29. If the economy is experiencing inflation, how might the government use each tool?
    14·1 answer
  • Why is a control needed in a valid experiment?
    6·1 answer
  • Propose a plausible mechanism for the following transformation: For the mechanism, draw the curved arrows as needed. Include lon
    7·1 answer
  • Need help is label a warm area or is b Orr are they both warm
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!