1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
2 years ago
13

3. After 7.9 grams of sodium are dropped into a bathtub full of water, how many grams of hydrogen gas are released?

Chemistry
2 answers:
Pavel [41]2 years ago
5 0

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}

Multiply. Hence:

=0.3463...\text{ g H$_2$}

Since we should have two significant values:

=0.35\text{ g H$_2$}

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}

So, approximately 65.2 grams of aluminum oxide is produced.

Lady_Fox [76]2 years ago
3 0

Explanation:

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}Na+H

2

O→Na

2

O+H

2

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}2Na+H

2

O→Na

2

O+H

2

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

22.990 g Na

1 mol Na

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

2 mol Na

1 mol H

2

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

1 mol H

2

2.016 g H

2

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}7.9 g Na⋅

22.990 g Na

1 mol Na

⋅

2 mol Na

1 mol H

2

⋅

1 mol H

2

2.016 g H

2

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}=7.9⋅

22.990

1

⋅

2

1

⋅

1

2.016 g H

2

Multiply. Hence:

=0.3463...\text{ g H$_2$}=0.3463... g H

2

Since we should have two significant values:

=0.35\text{ g H$_2$}=0.35 g H

2

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}O

2

+Al→Al

2

O

3

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}3O

2

+4Al→2Al

2

O

3

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

26.982 g Al

1 mol Al

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

4 mol Al

2 mol Al

2

O

3

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

1 mol Al

2

O

3

101.961 g Al

2

O

3

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}34.5 g Al⋅

26.982 g Al

1 mol Al

⋅

4 mol Al

2 mol Al

2

O

3

⋅

1 mol Al

2

O

3

101.961 g Al

2

O

3

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}=34.5⋅

26.982

1

⋅

4

2

⋅

1

101.961 g Al

2

O

3

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}=65.1852... g Al

2

O

3

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}=65.2 g Al

2

O

3

So, approximately 65.2 grams of aluminum oxide is produced.

You might be interested in
What is the [H+] if pOH =9.50 <br> will it be acid or basic?
Crank

Taking into account the definition of pH and pOH, the [H⁺] is 3.16×10⁻⁵ M and the solution will be acid.

First of all, pH is a measure of acidity or alkalinity that indicates the amount of hydrogen ions present in a solution or substance.

The pH is defined as the negative base 10 logarithm of the activity of hydrogen ions, that is, the concentration of hydrogen ions or H₃O⁺:

pH= - log [H⁺]= - log [H₃O⁺]

Similarly, pOH is a measure of hydroxyl ions in a solution and is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:

pOH= - log [OH⁻]

The following relationship can be established between pH and pOH:

pH + pOH= 14

In this case, being pOH= 9.50, pH is calculated as:

pH + 9.40= 14

pH= 14 - 9.50

<u><em>pH= 4.50</em></u>

Replacing in the definition of pH the concentration of H⁺ ions is obtained:

- log [H⁺]= 4.50

Solving :

[H⁺]= 10⁻⁴ ⁵

<u><em>[H⁺]= 3.16×10⁻⁵ M</em></u>

The numerical scale that measures the pH of the substances includes the numbers from 0 to 14, being acidic solutions with a pH lower than 7, and basic those with a pH greater than 7. The pH = 7 indicates the neutrality of the solution.

In this case, the pH has a value of 4.50. So, the solution is acidic.

In summary, the [H⁺] is 3.16×10⁻⁵ M and the solution will be acid.  

Learn more:

  • <u>brainly.com/question/16032912?referrer=searchResults </u>
  • <u>brainly.com/question/13557815?referrer=searchResults</u>
5 0
3 years ago
Four grams of magnesium react with an excess of dilute hydrochloric acid. Calculate the volume in liters of hydrogen gas collect
Helga [31]
Sorry I am confuse 3
5 0
3 years ago
How many elements are in the second group? (column)
zavuch27 [327]
Of the periodic table?
6 0
3 years ago
Which describes why liquid moves through a straw?
vodomira [7]

Answer:

C.

The air pressure creates a vacuum in the straw that pulls the air into the liquid.

4 0
2 years ago
Can you check this for me?
Aliun [14]
Hi, your answer is correct.
3 0
3 years ago
Other questions:
  • How many molds of atoms are there in each compound ?<br> 1. Al2S3<br> 2. NaNO3<br> 3. Ba(OH)2
    8·1 answer
  • The minimum number of seismograph stations necessary to determine the location of an earthquake’s epicenter is
    13·2 answers
  • What is decomposision reaction
    12·1 answer
  • The answers to the worksheet
    12·1 answer
  • What is an elementary reaction? 3.5. Given the reaction 2NO, + 1/202 = N,Os, what is the relationship between the rates of forma
    9·1 answer
  • How many grams of oxygen, O 2 , is consumed when 41.9 g of propane, C 3 H 8 , burns?
    8·1 answer
  • Explain what takes place during the G2 phase of the cell cycle.
    5·1 answer
  • How many kilojoules of heat energy are absorbed when 98.5 g of water are heated from 24.5 oC to 48.8 oC?
    10·1 answer
  • Name the 6 kinetic factors
    13·1 answer
  • A sample of silicon has an average atomic mass of 28.084amu. In the sample, there are three isotopic forms of silicon. About 92.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!