ENERGY WOULD BE RELALISED, MEANING BONDS ARE BEING BROKEN, SO IT IS AN EXOTHERMIC REACTION
Answer:
It is equal to Avogadro's number (NA), namely 6.022 x1023. If we have one mole of water, then we know that it will have a mass of 2 grams (for 2 moles of H atoms) + 16 grams (for one mole O atom) = 18 grams.
Explanation:
The question is not very much clear.
If you are asking for molecules then 1 mole water= 6.023 * 10^23
If you are asking for atoms then 1 mole water= 6.023 * 10^23 * 3
If you are asking for particles then,
So, in your example you would have one mole of water molecules. If you dissociated those water molecules, than you would end up with 2 moles of hydrogen atoms, and one mole of oxygen atoms.
I hope that was helpful!
H=1 proton,1 electron
O=8 protons,8 neutrons and 8 electrons
total particles in one H2O molecule-28
total no. of particles in 1 mole of water- 6.023 * 10^23 * 28
Answer:
a) The equilibrium will shift in the right direction.
b) The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Explanation:

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
On increase in amount of reactant

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of
is increasing .So, the equilibrium will shift in the right direction.
b)

Concentration of
= 0.195 M
Concentration of
= 
Concentration of
= 
On adding more
to 0.370 M at equilibrium :

Initially
0.370 M
At equilibrium:
(0.370-x)M
The equilibrium constant of the reaction = 

The equilibrium expression is given as:
![K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSbCl_3%5D%5BCl_2%5D%7D%7B%5BSbCl_5%5D%7D)

On solving for x:
x = 0.0233 M
The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
<span>The generalized reaction for chemical decomposition is: AB → A + B
NaOH is sodium hydroxide. When sodium and water is combined it makes sodium hydroxide and hydrogen
When sodium hydroxide decomposes under thermal decomposition, it breaks down into sodium oxide and water.
Thus, </span><span>C) 2NaOH Na2O + H2O</span>
Hey it's me again haha!
the answer to your question is:
answer: so f=20.1
a=8.2
m=?
f=ma
20.1 = 8.2*m in
20.1/8.2=m
so the answer is around 2.45 something!
also i'm sorry this question had be stumbled!