Answer:
It is easier to stop the bicycle moving at a lower velocity because it will require a <em>smaller force</em> to stop it when compared to a bicycle with a higher velocity that needs a<em> bigger force.</em>
Explanation:
The question above is related to "Newton's Law of Motion." According to the <em>Third Law of Motion</em>, whenever an object exerts a force on another object <em>(action force)</em>, an equal force is exerted against it. This force is of the same magnitude but opposite direction.
When it comes to moving bicycles, the force that stops their movement is called "friction." Applying the law of motion, the higher the speed, the higher the force<em> </em>that is needed to stop it while the lower the speed, the lower the force<em> </em>that is needed to stop it.
Answer:
d. perfectly elastic
Explanation:
According to the kinetic theory for collisions of gas molecules:
1.The loss of energy is negligible or we can say that it is zero.
2.Molecules of the gas move in a random manner.
3.The collision between molecules and with the wall of the container is perfectly elastic.That is why loss in the energy is zero.
Therefore the correct answer will be d.
d. perfectly elastic
Answer:
Rate = vmax k3/k2+k3
Explanation:
The rate of reaction when the enzyme is saturated with substrate is the maximum rate of reaction, is referred to as Vmax.
This is usually expressed as the Km ie. Michaelis constant of the enzyme, an inverse measure of affinity. For practical purposes, Km is the concentration of substrate which permits the enzyme to achieve half Vmax.
Please kindly check attachment for the step by step solution of the given problem.
Pretty sure it's C) condensation because all of the others required heat to be added
Answer:
Explanation:
N = 65
Area, A = 0.1 x 0.2 = 0.02 m^2
R = 10 ohm
ω = 29.5 rad/s
B = 1 T
(a) at t = 0
e = N x B x A x ω
e = 65 x 1 x 0.02 x 29.5
e = 38.35 V
(b) The maximum rate of change of magnetic flux is equal to the maximum value of induced emf.
Ф = 38.35 Wb/s
(c) e = NBAω Sinωt
e = 65 x 1 x 0.02 x 29.5 x Sin (29.5 x 0.05)
e = 38.174 V
(d) Maximum torque
τ = M B Sin 90
τ = N i A B
τ = N e A B / R
τ = 65 x 38.35 x 0.02 x 1 / 10
τ = 5 Nm