Work = Force * distance
Work = 20 N * 10 m = 200 Nm
Work = 200 Joules.
Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km
Answer:
ramp b requires less force than ramp a
Explanation:
Answer:
k = 2.279
Explanation:
Given:
Magnitude of charge on each plate, Q = 172 μC
Now,
the capacitance, C of a capacitor is given as:
C = Q/V
where,
V is the potential difference
Thus, the capacitance due to the charge of 172 μC will be
C = 
Now, when the when the additional charge is accumulated
the capacitance (C') will be
C' = 
or
C' = 
now the dielectric constant (k) is given as:

substituting the values, we get

or
k = 2.279
Answer:
Part a)

Part b)

Explanation:
As we know that torque is defined as the product of force and its perpendicular distance from reference point
so here we have

now we have


Part b)
Now we know the conversion as
1 meter = 3.28 foot
1 N = 0.225 Lb force
now we have


