(1) The wavelength of the wave is 1.164 m.
(2) The velocity of the wave is 23.7 m/s.
(3) The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
<h3>
Wavelength of the wave</h3>
A general wave equation is given as;
y(x, t) = A sin(Kx - ωt)
<h3>Velocity of the wave</h3>
v = ω/K
From the given wave equation, we have,
y(x, t) = 0.048 sin(5.4x - 128t)
v = ω/K
where;
- ω corresponds to 128
- k corresponds to 5.4
v = 128/5.4
v = 23.7 m/s
<h3>Wavelength of the wave</h3>
λ = 2π/K
λ = (2π)/(5.4)
λ = 1.164 m
<h3>Maximum speed of the wave</h3>
v(max) = Aω
where;
- A is amplitude of the wave
- ω is angular speed of the wave
v(max) = (0.048)(128)
v(max) = 6.14 m/s
Thus, the wavelength of the wave is 1.164 m.
The velocity of the wave is 23.7 m/s.
The maximum speed in the y-direction of any piece of the string is 6.14 m/s.
Learn more about wavelength here: brainly.com/question/10728818
#SPJ1
Answer: Reflection is the only process in which the wave does not continue moving forward.
Explanation:
Reflection is a process in which the direction of the wave changes when it is exposed to a bounce off barrier. Refraction can be defined as the change in the direction of the wave when the wave passes through one medium to another. Diffraction is a process in which the direction of the wave changes when the wave passes through a particular opening near the barrier.
Av Speed = total distance / time time = 32+ 46 / 2.7 = 28 m/sec
Av velocity = total displacement / time total = S / t
S = sqrt( 32^2 +46^2) = 56 m
Av Velocity = 56/ 2,7 = 20.75 m/sec
with angle tan^-1 = 0.7 north west ( about 35 degrees north west)
Answer:
gas
Explanation:
this is bcz they have higher kinetic energy compared to liquids and gases
Answer:
The two most common types of orbit are "geostationary" and "polar."