Carbon and hydrogen are also examples of elements
Answer:
61.85 ohm
Explanation:
L = 12 m H = 12 x 10^-3 H, C = 15 x 10^-6 F, Vrms = 110 V, R = 45 ohm
Let ω0 be the resonant frequency.


ω0 = 2357 rad/s
ω = 2 x 2357 = 4714 rad/s
XL = ω L = 4714 x 12 x 10^-3 = 56.57 ohm
Xc = 1 / ω C = 1 / (4714 x 15 x 10^-6) = 14.14 ohm
Impedance, Z = 
Z = \sqrt{45^{2}+\left ( 56.57-14.14 )^{2}} = 61.85 ohm
Thus, the impedance at double the resonant frequency is 61.85 ohm.
The question is incomplete. The complete question is :
Consider a composite cube made of epoxy with fibers aligned along one axis of the cube (the fibers are parallel to four of the twelve cube edges). If the cube can only be loaded in axial tension such that the force is uniformly applied over - and is normal to - a cube face, what is the lowest possible positive length change the cube can experience under this tension? The applied tensile force is 102 KN. The unloaded cube edge length is 56 mm. The glass fibers have an elastic modulus of 200 GPa. The epoxy has an elastic modulus of 38 GPa. The cube is comprised of 18 vol% epoxy (the balancing vol % is glass fiber). Hint: The loading axis is intentionally unspecified. Answer Format: Lowest possible length increase (change of length) under tension.
Solution :
Given :
= 200 GPa

= 38 GPa

Edge length = 56 mm
Cube is loaded in axial tension such that the force is uniformly applied over a cube face.


GPa
Applied stress 

= 32.5 MPa
By Hooke's law



Length change, 

= 0.016 mm
I think that would be the moon
"too small to clear objects that are in its orbital path" , which means that it probably not a planet.
hope this helps
Answer:
<u>
</u> is the centripetal acceleration.
Explanation:
As per given values
Radius of earth (r) = 6371000 m
The "international space station" is orbiting with a velocity (v) = 7667 m/s.
"Centripetal acceleration" is the acceleration is equal to "the square of the velocity" divided by "the radius of the circular path".

V = velocity of the orbit
R = radius of the earth + height of the space station
R = 6,371,000 + 408,000
R = 6779000 m
The direction of the centripetal acceleration is always inwards along the radius vector of the circular motion.



