Answer:
1.03mole
Explanation:
Given parameters:
Pressure = 0.884 atm
Temperature = 6°C = 273 + 6 = 279k
Volume = 26.5L
Unknown:
Number of moles = ?
Solution:
To solve this problem, we use the ideal gas equation:
PV = nRT
P is the pressure
V is the volume
n is the number of moles
R is the gas constant = 0.082atmdm³mol⁻¹K⁻¹
T is the temperature
n =
=
= 1.03mole
Trihydrate - basically 3 molecules of water. Unless you're referring to the molecule 3H2O used in measuring the total body water in the case it tritiated water.
Displaced volume:
final volume - initial volume
1 mL = 1 cm³
38.5 mL - 35.0 mL = 3.5 cm³
hope this helps!
Answer: Noble-gas notation of Sn contains Kr.
Explanation: Tin ( Sn) is an element having atomic number 50.
Nearest noble gas to this element is Krypton which has an atomic number 36.
Electronic configuration or noble-gas notation for Sn is written as :
![Sn=[Kr]4d^{10}5s^25p^2](https://tex.z-dn.net/?f=Sn%3D%5BKr%5D4d%5E%7B10%7D5s%5E25p%5E2)
As seen from above, Noble gas Krypton having symbol 'Kr' is coming in the electronic configuration for Tin.
Answer : The O-O bond in
will be longer than the O-O bond in
.
Explanation :
In the
, the two oxygen atoms are bonded by the single bond and in
, the two oxygen atoms are bonded by the double bond.
As we know, the bond strength of double bond is greater than the single bond.
And the relation between the bond strength and bond length is,

That means the higher the strength, the shorter will be the bond length.
Hence, the bond length of single bond will be longer than the double bond.
The structure of given molecule is shown below.