The speed is constant since there is no opposite force facing the car
That’s my best guest hope it helps !! :)
Answer: Hi!
A neuron is a basic working unit of the brain. Neurons are special cells designed to transfer information to other nerve, muscle, or gland cells. They are pretty cool - looking too! (A slightly irregular circular shape with branches reaching out from all sides.) A neuron is a nerve cell. Nerve cells are the way of communication in the nervous system.
Hope this helps!
Yes, scientific method can be applied on many everyday activities to get a reasonable solution. Infact normally we are applying this method without having it in our knowledge that we are applying it.
For example: In morning we are going to office and we start the car, but it is not started.You turn the engine again and again but it simply donot works.
Observation (the state of defining a problem):
The car is not started
Hypothesis (A possible solution based on the information we already know):
The car is not started because it might be out of gas or there can be some other technical fault.
Experiment (testing of hypothesis by applying different methods of solving problem):
You get the fuel and put it inside the car but it still donot works and car didnot start. Experiment didnot get solution.
Analyze the results of data and test another hypothesis
You call a technician and he check with the car engine tries and finds out that the engine was out of order and needs repairing.
Draw conclusion:
The engine do not works when it is out of order and it is a cause of a car not being started.
<em>Now the theory and law making part can not be applied on this case but it is a part of scientific method.</em>
Hope it helps!
Answer:
Final speed of boat + man is 1.66 m/s
Explanation:
As we know that there is no friction on the system or there is no external force on this system
So here we can use momentum conservation here

so we have
m = 85 kg
M = 135 kg
v = 4.30 m/s
now we have


<span>118 C
The Clausius-Clapeyron equation is useful in calculating the boiling point of a liquid at various pressures. It is:
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
where
Tb = Temperature boiling
R = Ideal Gas Constant (8.3144598 J/(K*mol) )
P = Pressure of interest
Hvap = Heat of vaporization of the liquid
T0, P0 = Temperature and pressure at a known point.
The temperatures are absolute temperatures.
We know that water boils at 100C at 14.7 psi. Yes, it's ugly to be mixing metric and imperial units like that. But since we're only interested in relative pressure differences, it's safe enough. So
P0 = 14.7
P = 14.7 + 12.3 = 27
T0 = 100 + 273.15 = 373.15
And for water, the heat of vaporization per mole is 40660 J/mol
Let's substitute the known values and calculate.
Tb = 1/(1/T0 - R ln(P/P0)/Hvap)
Tb = 1/(1/373.15 K - 8.3144598 J/(K*mol) ln(27/14.7)/40660 J/mol)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K ln(1.836734694)/40660)
Tb = 1/(0.002679887 1/K - 8.3144598 1/K 0.607989372/40660)
Tb = 1/(0.002679887 1/K - 5.055103194 1/K /40660)
Tb = 1/(0.002679887 1/K - 0.000124326 1/K)
Tb = 1/(0.002555561 1/K)
Tb = 391.3034763 K
Tb = 391.3034763 K - 273.15
Tb = 118.1534763 C
Rounding to 3 significant figures gives 118 C</span>