The emf will be induced in anti-clockwise direction.
<u>Explanation</u>
Lenz's law tells us the direction us the direction that the current will flow. It states that the direction is always such that it will oppose the change in flux which produced it. This means that any magnetic field produced by an induced current will be in opposite direction to the change in the original field.
To find the direction of emf, Stretch the forefinger, middle finger and the thumb of the right hand mutually perpendicular to each other. If the force finger points in the direction of the magnetic field, the thumb gives the direction of the motion of the conductor then the middle finger gives the direction of the induced current.
The potential difference across 3 Ohm resistor is 20V.
The resistors are connected in parallel which means all the three resistances have a fully potential difference of 20V.
Answer:
The Height of a pyramid is 4r.
Explanation:
Explanation is in the following attachments
The average speed is 116.66m/s.
Given - The path traced is 14km , time for jogging is 2 hrs=120min
To find the average speed-
- Speed refers to the ease of the movement and degree of mobility as a result of force application.
- Due to this there is involvement of velocity.
- Journey of average speed is the cumulative of distances and time.
- Kinetic theory refers to the Boltzmann constant connecting to the standards of distance traversed.
calculations-

Speed= 14 000 / 120
= 116.66m/s
To learn more about average speed -
<u>brainly.com/question/27753148</u>
#SPJ4
Based on Hooke's law, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
<h3>What is the spring constant?</h3>
The spring constant or stiffness constant of an elastic spring is constant which describes the extent a bit forceapplied to an elastic spring will extend it.
- Spring constant, K = force/extension
Assuming, a body's muscle mechanism is a spring obeying Hooke's law, the effective mass of the spring with mass m is 1/3 of the mass of the spring = m/3
The potential energy that can be stored = ke^2 / 2
where K is spring constant and e is the extension produced.
Therefore, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
Learn more about Hooke's law at: brainly.com/question/12253978