Answer:
0.625
Step-by-step explanation:
Given :
Ambell company uses or procures batteries from two manufacturers.
The life of a battery in critical tool is at = 32 hours
Ambell uses 70% of its batteries from manufacturer 1 and out of that 90% batteries lasts for about 40 hours.
Similarly, 75% of the batteries procured from the manufacturer 2 lasts for about 40 hours.
Therefore, the probability that a battery is form manufacturer 1 is :

= 0.625
Answer:
The answer is 6.5 hours.
Step-by-step explanation:
If you multiply the hours need to work during that week days(6) and the hours worked during the weekend(3.5) you get 33.5 hours worked over all. then, you subtract 40(the hours wanted) and 33.5(the hours worked normally) and you get 6.5.
Answer:
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
Step-by-step explanation:
1 Use Square of Sum: {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}(a+b)
2
=a
2
+2ab+b
2
.
({x}^{2}+2xy+{y}^{2})({x}^{2}+2xy+{y}^{2})(x
2
+2xy+y
2
)(x
2
+2xy+y
2
)
2 Expand by distributing sum groups.
{x}^{2}({x}^{2}+2xy+{y}^{2})+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
2
(x
2
+2xy+y
2
)+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
3 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
4 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
(x
2
+2xy+y
2
)
5 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}{x}^{2}+2{y}^{3}x+{y}^{4}x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
x
2
+2y
3
x+y
4
6 Collect like terms.
{x}^{4}+(2{x}^{3}y+2{x}^{3}y)+({x}^{2}{y}^{2}+4{x}^{2}{y}^{2}+{x}^{2}{y}^{2})+(2x{y}^{3}+2x{y}^{3})+{y}^{4}x
4
+(2x
3
y+2x
3
y)+(x
2
y
2
+4x
2
y
2
+x
2
y
2
)+(2xy
3
+2xy
3
)+y
4
7 Simplify.
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4