Answer:
The total work done will be zero.
Explanation:
Given that,
Mass = 100 kg
Force = 392 N
Velocity = 20 m/s
Distance s= 10 m
We need to calculate the work done
Using balance equation
The net force will be



The net force is zero.
Hence, The total work done will be zero by all forces on the object.
Remember, half of the energy in an EM wave is in the E field, the rest is in the B field.
Thus, multiply E field energy by 2.
To calculate the energy of the wave you must then use the following equation: W = A*t*c*2*(1/2*E^2*Eo). Where, A = Area, t = time, c = speed of light (which is a constant), E = Electric field, E0 = vacuum permittivity (8.85*10^-12 Nm^2/C^2). Substituting W =(0.320)*(26)*(3*10^8)*(2)*((1/2)*(1.95*10^-2)^2*(8.854*10^-12)) = 8.40*10^-6 J
P always P because P is an awkward Dorian letter that can always be trusted
Answer:5.45X10^3m
Explanation:So use the formula,v= fλ
3X10^8=5.5X10^4λ what Im saying is divide both and u should get 5454.54m but do sig figs to get answer