Answer:
t = 12s
Explanation:
Given:
v-initial = 0 m/s
x = 360 m
a = 5.0 m/s^2
Solve:
x = (v-initial)t + 1/2(a*t^2)
360 = 0t + 1/2 (5.0t^2)
360 = 2.5 t^2
144 = t^2
t = sqrt(144) = 12
Therefore, it takes 12 seconds.
Answer:
Sound wave types - longitudinal waves
Longitudinal waves - Vibrating string the creates sound in the way it moves.
Explanation:
Longitudinal waves have particles of the medium that are displaced in a parallel direction to energy transport.
To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that


As we know that speed is equivalent to displacement in a unit of time, we will have to



Therefore the tension is 5.54N
Answer:
2000 kg m/s
Explanation:
The momentum of an object is a vector quantity whose magnitude is given by

where
m is the mass of the object
v is the velocity of the object
and its direction is the same as the velocity.
In this problem, we have:
- Spaceship 1 has
m = 200 kg (mass)
v = 0 m/s (zero velocity)
So its momentum is

- Spaceship 2 has
m = 200 kg (mass)
v = 10 m/s (velocity)
So its momentum is

Therefore, the combined momentum of the two spaceships is

Answer:

Explanation:
= Initial pressure = 
= Initial volume
= Final volume = 
Temperature is the same in the initial and final state
From the ideal gas law we have

The final pressure of the system is
.